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Abstract

This paper studies the incentives of the seller and buyers to shill bid in
a single-item auction. An auction is seller identity-compatible if the seller
cannot profit from pretending to be one or more bidders via fake identities.
It is buyer identity-compatible if no buyer profits from posing as more than
one bidder. Lit auctions reveal the number of bidders, whereas dark auctions
conceal the information. We characterize three classic selling mechanisms—
first-price, second-price, and posted-price—based on identity compatibility. We
show the importance of concealing the number of bidders, which enables the
implementation of a broader range of outcome rules. In particular, no optimal
lit auction is ex-post seller identity-compatible, while the dark first-price auction
(with reserve) achieves the goal.
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1 Introduction
Shill bidding can be challenging to identify and prevent in practice. Historically, even when
physical attendance at auctions was required because of technical constraints, multiple
bidders might still have acted on behalf of a buyer or the seller. These bidders often used
subtle, hard-to-detect signals to communicate their intentions. “Such signals may be in the
form of a wink, a nod, scratching an ear, lifting a pencil, tugging the coat of the auctioneer,
or even staring into the auctioneer’s eyes—all of them perfectly legal” (Cassady, 1967).

In today’s marketplaces, it becomes increasingly hard to detect shill bidding. As reported
by the Wall Street Journal,1 most bids come in online or by telephone in major auction
houses like Christie’s or Sotheby’s, which makes it difficult to verify the identities of bidders.
A long-standing practice in the industry is “chandelier bidding,” under which auctioneers
declare a series of fictitious bids to drum up excitement within the crowd. It used to
be only legal until reaching the secret reserve price, i.e., the minimum price at which a
consignor was willing to sell. Recently, in an unexpected move, New York City repealed such
regulation, which made many experts fear that it would erode people’s trust and confidence.2

Unsurprisingly, internet auctions are particularly susceptible to shill bidding, because buyers
and sellers do not reveal their identities and trade goods anonymously. Despite the risk of
legal consequences,3 shill bidding remains pervasive due to its ease of implementation and
the significant challenges involved in detecting it. For example, Chen, Liang, Chang, Liu,
Yin and Yu (2020) estimate that in eBay Motors auctions, approximately 9% of bidders are
shill bidders and around 22% of all listings contain shill bids. While shill bidding is typically
associated with the seller, buyers can also exploit it profitably. Seibel and Škoda (2023)
document that buyers can employ shills to crowd out competitors during the preselection
stage in two-stage auctions (Example 2).

Shill bidding raises concerns not only for buyers and the seller but also for the marketplace
as a whole. Despite the deregulation in New York City, major auction houses have expressed
their intent to operate as if the previous regulations were still in place (Herrera, 2023),
even though they lack full commitment to enforcing them (Akbarpour and Li, 2020). eBay
emphasizes that “we want to maintain a fair marketplace for all our users, and as such, shill
bidding is prohibited on eBay.. . . eBay has a number of systems in place to detect and monitor
bidding patterns and practices. If we identify any malicious behavior, we’ll take steps to

1Why auction rooms seem empty these days. The Wall Street Journal, June 15, 2014.
2New York City Eliminates the Rules That Govern Art and Other Auctions, The New York Times,

May 3, 2022.
33 Men Are Charged With Fraud In 1,100 Art Auctions on EBay, The New York Times, March 9,

2001.
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prevent it.”4 But so far, those measures appear to be only partially effective.5 Marketplaces
aim to build a reputation for fairness, yet they often struggle with challenges due to a
lack of commitment power and credibility. For instance, Google, as the operator of the
largest online displaying advertising market, is facing a lawsuit over alleged shill-bidding-like
manipulations of ad auctions.67

Given the importance of preventing shill bidding, which auction designs are most effective
in deterring this practice? This paper answers this question by examining which auction
formats are incentive-compatible for buyers and/or the seller to truthfully report their
identities—that is, who they truly are. We differentiate between bidders—identities showing
up in the auction—and buyers, who act on behalf of their own sincere interests for purchase.
Shill bidding occurs when the seller uses fake identities to pretend to be one or more bidders,
or when a single buyer adopts more than one identity to pose as multiple bidders. We
assume that no one knows who controls which bidders (identities) except for their own.

The challenge of identifying shill bidding stems from the uncertainty regarding the
number of buyers. In the absence of such uncertainty, shill bidding becomes evident when
the number of bidders participating in the auction exceeds the number of buyers. This
stands in contrast with the standard auction theory, which assumes common knowledge of
a fixed number of buyers (Vickrey, 1961; Myerson, 1981; Milgrom and Weber, 1982). It
follows that when the designer proposes a mechanism, the exact number of buyers is not yet
known.8 Accordingly, the proposed mechanism must be capable of accommodating varying
numbers of buyers, unlike standard auction models where the number of buyers is considered
a fixed primitive.9 Hence, we model the auction game in the presence of shill bidding as
follows.

The game begins with the designer publicly announcing the mechanism. Following this,
both buyers and the seller simultaneously decide how many identities to employ, which

4Shill Bidding Policy, eBay.
5There are still many recent discussions about shill bidding on eBay posted online.
6Google Misled Publishers and Advertisers, Unredacted Lawsuit Alleges, The Wall Street Journal,

Jan 14, 2022.
7Google Broke the Law to Keep Its Advertising Monopoly, a Judge Rules, The New York Times,

April 17, 2025.
8One key consideration in practical auction design is attracting buyers (Bulow and Klemperer,

1996; Klemperer, 2002; Milgrom, 2004, 2017), as increased competition—driven by a higher number
of buyers—can significantly raise the auction’s revenue (Holt, 1979; McAfee and McMillan, 1987a).
The uncertainty regarding the number of buyers is a typical feature of many real-world auctions,
even in the absence of shill bidding.

9Consider the first-price auction as an example. In practice, the number of buyers is often
uncertain, so the first-price auction can be viewed as a collection of standard first-price auctions, each
corresponding to a different finite number of buyers. The auction effectively operates as a collection
of these scenarios.
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together determine the total number of bidders. Finally, the specific auction corresponding
to this total number of bidders is conducted, with both buyers and the seller controlling the
bidders (identities) they have employed. Notably, the designer observes only the bidders
(identities) rather than the underlying seller or buyers who control them, and the auction
format may vary depending on the number of bidders. For example, the designer might run
the first-price auction when there are no more than five bidders, and switch to the second-
price auction otherwise. Shill bidding offers two channels for participants to manipulate
the auction: first, by altering the auction format through the selection of a specific number
of bidders, and second, by optimizing the strategies of the bidders they control within the
specific auction. I study the implications of shill bidding in the symmetric independent private
values model (Myerson, 1981). Symmetry arises from anonymity because the mechanism
cannot discriminate against bidders (identities), which are ex-ante identical.

A new design element emerges when modeling the mechanism as a collection of standard
auctions: whether the number of bidders is common knowledge or not. When the standard
auction theory assumes common knowledge of a fixed number of buyers, it implicitly
encompasses two assumptions: first, that the number of bidders is common knowledge, and
second, that each bidder represents a distinct buyer. In the presence of shill bidding, the
second assumption no longer holds true, and the first assumption transforms into a design
choice.10 I will slightly abuse the terminology and refer to the mechanism as an auction,
even though it actually consists of standard auctions, each corresponding to a different finite
number of bidders. An auction is a lit auction if the number of bidders is common knowledge.
An auction is a dark auction if the number of bidders is concealed. I do not differentiate
between auctions that induce the same equilibrium outcome for each type profile. In this
paper, a collection of first-price (or Dutch) auctions, each corresponding to a different finite
number of bidders, is called the first-price auction; similarly, a collection of second-price (or
English) auctions is called the second-price auction; a collection of posted-price mechanisms
with the same price is called the posted-price mechanism.11

To deter shill bidding, the auction should ensure that the seller finds it unprofitable to
participate via multiple identities, and buyers find it unprofitable to control more than one
identity. In other words, it is incentive-compatible for them to report their true identities
rather than exploiting fake ones. We refer to this property as identity compatibility, and
explore different notions of it as follows.12 Bayesian (buyer or seller) identity compatibility

10Notice that the number of bidders does not necessarily equal the number of buyers because of
shill bidding.

11In the posted-price mechanism, the seller proposes a take-it-or-leave-it price to buyers. If multiple
buyers accept the price, the seller breaks the tie among them.

12Incentive compatibility “requires that no one should find it profitable to “cheat,” where cheating
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entails no profitability in expectation (for buyers or the seller respectively). Ex-post (buyer
or seller) identity compatibility is a stronger notion, ensuring no profitability for every
type profile of others. Finally, ex-post auctioneer identity compatibility further strengthens
ex-post seller identity compatibility by accounting for the possibility that the seller and the
auctioneer collude to deviate from the auction rules in ways that remain undetectable to
buyers, even when buyers can share information after the auction.13

The first main result (Theorem 1) shows that the second-price auction with (or without)
the optimal reserve price is the unique optimal (or optimally efficient) auction that is
ex-post buyer identity-compatible. This follows from the fact that ex-post buyer identity
compatibility implies strategy-proofness (Lemma 1). It holds in both lit and dark auctions,
because strategy-proofness renders the number of bidders irrelevant. Furthermore, we
extend this result to the finite type space (Theorem 6). It is important to note, however,
that the standard characterization of the second-price auction under strategy-proofness
does not directly generalize to the finite type space.14 Hence, this result provides a novel
characterization of the second-price auction that is valid across both finite and continuous
type spaces.

The second main result (Theorem 2) is an impossibility theorem: no optimal (or
optimally efficient) lit auction is ex-post seller identity-compatible. This result underscores a
fundamental dilemma for the seller. On one hand, competition in the auction is essential to
maximize revenue. On the other hand, the seller cannot credibly commit to refraining from
exploiting the competition for their benefit through the use of identities. Consequently, it is
impossible to simultaneously achieve both optimality and ex-post seller identity compatibility
in lit auctions, reflecting the fundamental tension between revenue maximization and the
creation of fake competition by the seller. For any optimal lit auction, the seller always has
an incentive to participate via identities to increase the revenue.

Given this tension, I proceed to identify the best auction for the seller—one that frees
them from any suspicion of manipulating the auction in their favor while maximizing revenue.
In particular, I take into account the possibility that the seller colludes with the auctioneer.
It turns out that the posted-price mechanism generates the highest expected revenue among
all lit auctions that are ex-post auctioneer identity-compatible (Theorem 3). It reinforces
the previous result by showing that the dilemma not only constrains the seller but does so in

is defined as behavior that can be made to look “legal” by a misrepresentation of a participant’s
preferences or endowment” (Hurwicz, 1972). Identity compatibility requires that no one should find
it profitable to “cheat” by deceiving others using fake identities.

13In some cases, the seller is also the auctioneer.
14See Holmström (1979), Harris and Raviv (1981), Lovejoy (2006), Elkind (2007), and Jeong and

Pycia (2023).
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the strictest way that they have to completely tie their hands. The rigidity of the payment
is the cost the seller has to incur in order to maintain self-discipline.

Subsequently, I turn to dark auctions due to the impossibility result for lit auctions. I
demonstrate that the dark first-price auction with (or without) the optimal reserve price is
the unique optimal (or optimally efficient) dark auction that is ex-post auctioneer identity-
compatible and Bayesian buyer identity-compatible (Theorem 4). In other words, we see
“light in the dark.” The intuition behind this is that the pay-as-bid property ensures that
the seller cannot manipulate the payment even if they know the type profile of buyers.
Moreover, since the number of bidders is concealed in dark auctions, the seller is unable to
heighten the perceived competition among buyers by employing multiple identities. The
dilemma highlighted in Theorem 2 is addressed by converting the competition essential for
achieving optimality into a fixed bid through the concealment of the number of bidders.
The key thing to notice here is that competition in the auction can be analyzed from
two perspectives: intensive competition, which pertains to a fixed number of bidders, and
extensive competition, which arises from variations in the number of bidders. The intensive
competition for a fixed number of bidders can be integrated into a fixed bid, as in the
first-price auction, ensuring it cannot be manipulated by other participants. The problem
for lit auctions is that the extensive competition can always be exploited by the seller, e.g.,
the equilibrium bid in the first-price auction increases with the number of bidders. The dark
first-price auction resolves this problem by incorporating the extensive competition into a
fixed bid across different numbers of bidders, thereby preventing such exploitation.

Together, these results imply an auction dilemma: an optimal auction cannot simultane-
ously achieve ex-post identity compatibility for both buyers and the seller. This dilemma
can be resolved by relaxing the requirement from “ex-post” to “Bayesian” for either party.

Finally, I discuss how these results extend to dynamic auctions and partitional disclosure
policies. By examining identity compatibility in auctions, this paper characterizes the first-
price auction, the second-price auction, and the posted-price mechanism. The comparison
between lit and dark auctions underscores the significance of concealing the number of
bidders in the presence of shill bidding, as it allows for the implementation of a broader
range of outcome rules (Theorem 5).

It is well known in practice that information disclosure in auctions can facilitate collusion
by providing a mechanism for signalling and punishment, highlighting that transparency
is not inherently beneficial (Cramton and Schwartz, 2000; Klemperer, 2002, 2003).15 This
paper reinforces that point from a straightforward perspective, showing that when the

15In Hong Kong 3G auction, transparency was abused by strong bidders to lobby for a “small”
change of design, which made entry harder and collusion easier in the end. Interestingly, they
ridiculed the original design by calling it the “dark auction.” (See Footnote 48 in Klemperer (2003).)
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disclosed information—specifically, the number of bidders—can be falsified by fake identities
to mislead participants, it is better to conceal it.

1.1 Related Literature
I am far from the first to consider shill bidding in auctions. The previous literature focuses
on shill bidding separately by the seller and buyers. Since my analysis addresses both, I first
review the literature on buyers and then on the seller.

Sakurai, Yokoo and Matsubara (1999) and Yokoo, Sakurai and Matsubara (2004) refer
to shill bids from buyers as false name bids. They focus on false-name-proof combinatorial
auctions and emphasize that the failure of the substitutes condition makes the VCG16

auction vulnerable to false name bids, which is in the same spirit as the collusion problem
examined by Ausubel and Milgrom (2002; 2005). Sher (2012) studies the optimal shill
bidding strategies in the VCG auction for heterogenous objects. For the single-unit setting,
Arnosti, Beck and Milgrom (2016) combine false-name-proofness with adverse selection in
advertising auctions. Different from mine, they directly focus on strategy-proof auctions.

There is a richer literature on shill bidding by the seller. Most of them restrict attention
to the case that the seller uses only one shill and study how the seller makes best use of
it. Graham, Marshall and Richard (1990) study the English auction with heterogenous
buyers, and show that the seller may benefit from shill bidding in expectation by using a
non-constant reserve price when buyers are indistinguishable. Relatedly, Izmalkov (2004)
shows that the seller cannot do so in the English auction with personalized optimal reserve
prices when buyers are distinguishable.17 Chakraborty and Kosmopoulou (2004) consider
the English auction with common values, and show that the seller can get worse off in
expectation by the possibility of shill bidding if buyers take that into account when bidding.
With interdependent values, Lamy (2009) shows that the linkage effect (Milgrom and Weber,
1982) is reduced by the shill-bidding effect that buyers fear that they are bidding against
the seller in the second-price auction. Levin and Peck (2023) characterize the optimal shill
bidding strategy for the seller in the English auction with common values. Compared to
the previous literature, this paper shows that both how the seller places bids through a
shill and how many shills the seller uses in the auction matter. In particular, the seller can
manipulate the perceived competition among buyers by using multiple shills, which has
received little attention in the literature.

In a parallel work, Shinozaki (2024) characterizes the posted-price rule as the unique
16The Vickrey-Clarke-Groves mechanism (Vickrey, 1961; Clarke, 1971; Groves, 1973).
17Lamy (2013) studies how shill bidding affects the second-price auction with costly entry.
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shill-proof one when focusing on deterministic and strategy-proof mechanisms.18 Theorem 3
in this paper allows for stochastic mechanisms and does not rely on strategy-proofness. In a
contemporary work, Komo, Kominers and Roughgarden (2024) establish the Dutch auction
(with reserve) as the unique optimal public auction that is strongly shill-proof, where they
fix the number of bidders and exclude bids of zero from being classified as shill bids.19 In
contrast, I consider the presence of shills in the auction to be shill bidding, regardless of
the bids placed through them. My impossibility result (Theorem 2) is not restricted to
the environment with a fixed number of bidders. Consequently, I argue the importance of
concealing the number of bidders in the presence of shill bidding (Theorem 4).20

Identity compatibility is related to the concept of credibility introduced by Akbarpour
and Li (2020), but they are inherently different. Akbarpour and Li (2020) focus on the private
communication between buyers and the auctioneer, and the deviation of the auctioneer
from auction rules. In contrast, shill bidding itself does not involve deviations from the
rules. With shills, the seller can only communicate “publicly” with buyers by participating
in the auction as one or more bidders, whereas the number of bidders is fixed in Akbarpour
and Li (2020). In particular, credibility does not consider the deviation of the auctioneer
by misreporting the number of buyers in the auction. As a result, the first-price auction
is credible but not Bayesian seller identity-compatible, because the seller can boost the
perceived competition by “making the auction room crowded.”

The paper also contributes to the literature on characterizations of auction formats. For
the first-price (or Dutch) auction, see Akbarpour and Li (2020), Pycia and Raghavan (2021),
Jeong and Pycia (2023), Komo, Kominers and Roughgarden (2024), and Häfner, Pycia
and Zeng (2024). For the second-price (or English) auction, see Green and Laffont (1977),
Holmström (1979), Li (2017), Akbarpour and Li (2020), and Pycia and Troyan (2023). For
the posted-price mechanism, see Hagerty and Rogerson (1987), Čopič and Ponsatí (2016),
Andreyanov, Čopič and Jeong (2018), Pycia and Troyan (2023), and Shinozaki (2024).
Previous results work with various concepts, like strategy-proofness, robustness, credibility,
simplicity, non-bossiness, and leakage-proofness. This paper unifies all characterization
results by varying different notions of identity compatibility. Finally, the way of modeling
the mechanism as a collection of standard auctions connects to the literature on uncertain
number of buyers in auctions (McAfee and McMillan, 1987b; Matthews, 1987; Harstad,

18Shill-proofness in Shinozaki (2024) is similar to ex-post auctioneer identity compatibility (Defini-
tion 14) in this paper.

19Strong shill-proofness is similar to ex-post auctioneer identity compatibility, but the seller has to
dynamically adjust the number of shills to keep the number of bidders fixed when different numbers
of buyers realize, no matter what the seller’s bidding strategies are.

20Wang, Hidvégi, Zoltán and Whinston (2004) study how to deter the seller from shill bidding by
charging a commission fee.
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Kagel and Levin, 1990; Lauermann and Speit, 2023).

1.2 Outline of the Paper
In Section 2, we present the model and incorporate identities into auctions. Section 3 defines
identity compatibility and explores its implications in lit auctions. In Section 4, we introduce
dark auctions and revisit the concept of identity compatibility. Section 5 concludes with
further extensions. Omitted proofs can be found in Appendix A and Online Appendix B.

2 Model
We index all potential agents with natural numbers N = {1, 2, . . . }. Agents are ex-ante
identical and indistinguishable.21 Agents’ types are denoted by θi ∈ Θi = Θ for all i ∈ N,
which are independent and identically distributed.22 Let N denote the collection of all finite
subsets of the set of potential agents N.23 Let B be a random variable representing the set
of agents, with realizations denoted by B ∈ N . Then,

∑
B∈N P (B = B) = 1. For any finite

set of agents N ∈ N , there is a set of outcomes XN , with generic element xN =
(
xN

i

)
i∈N

.24

Each agent i ∈ N has a von Neumann-Morgenstern utility function ui : XN × Θi → R.25

2.1 Collection of Games
When the set of agents is random, the designer proposes a collection of games ΓN =(

ΓN
)

N∈N
, where each game ΓN is designed for each finite set of agents N ∈ N . Consider

the game ΓN . Let MN
i denote the set of messages for agent i ∈ N , with generic element

mN
i . A strategy SN

i for agent i maps each type θi to a message mN
i , i.e., SN

i : Θi → MN
i .26

Let ΣN
i denote the set of strategies for agent i in the game ΓN . Let MN = ×i∈N MN

i

and gΓN =
(
gΓN

i

)
i∈N

: MN → XN be a function that maps each message profile mN =

21In Section 5.4, we consider the case in which agents are distinguishable and their types are not
necessarily identically distributed.

22Formally, for each agent i ∈ N, the type space Θi is endowed with σ-algebra Fi. There is a
probability measure Di : Fi → [0, 1]. The distribution is identical across agents, i.e., Di = Dj for all
i, j ∈ N.

23N is countable, because the set of all finite subsets of a countable set is countable.
24We allow for stochastic outcomes.
25When agents are indistinguishable, the utility function ui may vary with the number of agents

|N |. In contrast, when agents are distinguishable, the utility function should be denoted by uN
i ,

indicating that it may vary with the specific identities of the set of agents N .
26Mixed strategies are allowed when mN

i is treated as a generic mixed message.
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(
mN

i

)
i∈N

∈ MN to an outcome xN =
(
xN

i

)
i∈N

∈ XN . When agents submit a message

profile mN , agent i obtains the outcome gΓN

i

(
mN

)
.

Because agents are indistinguishable, the designer is unable to discriminate against
agents’ identities. Hence, the collection of games ΓN is anonymous in the sense that it treats
any group of agents of the same size identically and the outcome is independent of their
individual identities. Let |N | denote the cardinality of the set of agents N .

Definition 1. ΓN =
(
ΓN
)

N∈N
is anonymous if, for all N, N ′ ∈ N such that |N | = |N ′|,

all bijective functions φ : N → N ′, and all mN ∈ MN , we have gΓN

i

(
mN

)
= gΓN′

φ(i)

(
m̂N ′

)
,

where mN
i = m̂N ′

φ(i) for all i ∈ N .

In other words, ΓN and ΓN ′ are identical up to a relabeling of agents for all N, N ′ ∈ N
such that |N | = |N ′|. As a result, we can rewrite ΓN as a collection of symmetric games
ΓN = (Γn)n∈N. For any set of agents N with size |N | = n, the agents play the game Γn.
Symmetry follows directly from anonymity, as agents are treated identically in the game.
The strategy space Σn for each agent in the game Γn satisfies Σn = ΣN

i = ΣN ′
j for all i ∈ N

and j ∈ N ′, where |N | = |N ′| = n. We focus on symmetric equilibria.27 Let Sn denote
the type-strategy for each agent in the game Γn that maps from types to strategies, i.e.,
Sn : Θ → Σn. When agents play according to Sn (θN ) = (Sn (θi))i∈N , the resulting outcome
is gΓn (Sn (θN )). Let

(
ΓN, SN

)
= (Γn, Sn)n∈N denote the collection of games and strategy

profiles.

Definition 2.
(
ΓN, SN

)
is lit Bayesian incentive-compatible if, for all n ∈ N, all i ∈ N, and

all θi ∈ Θ,
Sn (θi) ∈ arg max

σn∈Σn
Eθ−i∈Θn−1

[
ui

(
gΓn (σn, Sn (θ−i)) , θi

)]
.

We call
(
ΓN, SN

)
a lit mechanism if it is lit Bayesian incentive-compatible. The term

“lit” highlights the implicit assumption that each agent is aware of the number of agents
participating in the game. As this notion is standard in the literature, we will occasionally
omit the qualifier and refer to lit mechanisms simply as mechanisms when the context is clear.
To avoid confusion early on, we postpone the definition of dark mechanisms (Definition 15)
to Section 4.1. We further discuss lit and dark mechanisms in environments where agents

27Restricting attention to symmetric equilibria follows the usual practice in the literature, given the
symmetric environment under consideration. Moreover, this restriction entails no loss of generality
with respect to the implementation of an anonymous outcome rule—i.e., one that depends solely on
the type profile of agents and not on their identities. Specifically, for any asymmetric equilibrium in
the game Γn that implements such a rule, one can construct a symmetric equilibrium in an augmented
game by introducing an initial randomization stage. In this stage, agents are randomly assigned to
roles in the asymmetric strategy profile, thereby inducing a symmetric equilibrium that preserves the
implementation of the anonymous outcome rule.
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are distinguishable in Section 5.4.
We define an equivalence relation between mechanisms. Two mechanisms

(
ΓN, SN

)
and(

Γ̂N, ŜN
)

are equivalent if, for all n ∈ N and all type profiles θN ∈ Θn, the distribution over
outcomes from the strategy profile Sn (θN ) in the game Γn is the same as that from the
strategy profile Ŝn (θN ) in the game Γ̂n.

Definition 3. Two mechanisms
(
ΓN, SN

)
and

(
Γ̂N, ŜN

)
are equivalent if, for all n ∈ N, we

have gΓn (Sn (·)) = gΓ̂n

(
Ŝn (·)

)
.

This equivalence definition is purely outcome-based. Equivalent mechanisms implement
the same outcome rule, i.e., the same mapping from type profiles to outcomes. In this paper,
we do not differentiate between equivalent mechanisms and focus on direct mechanisms. As
shown in Section 5.3, this restriction entails no loss of generality. All of our results extend
to indirect (or dynamic) mechanisms as well.

2.2 Auctions with an Unknown Number of Buyers

2.2.1 Identities

There is only one item for sale. Accordingly, the random variable B denotes the set of buyers
attracted to the item, with B ∈ N representing a realized set of buyers. We assume that
the expected number of buyers is finite, i.e.,

∑
n∈N nP (|B| = n) < ∞.28 We assume that

P (|B| = 1) > 0.29 Each buyer’s type θi corresponds to i’s valuation for the item to be sold.
Assume that Θi = Θ = [0, 1] and that θi is independently identically distributed according
to a continuous full-support density f : [0, 1] → R. The cumulative distribution function is
denoted by F (θi) =

∫ θi
0 f (x) dx. The seller is denoted by 0.

Both the seller and buyers can act under possibly multiple (fake) identities. Let Ni

denote the set of identities employed by buyer i ∈ B. In particular, each buyer’s true identity
is included in this set, i.e., i ∈ Ni. The collection of all identities used by buyers is denoted
by NB = ∪i∈BNi. When buyers do not shill bid, we have B = NB. Let S denote the set of
identities employed by the seller. When the seller does not shill bid, we have S = ∅. The
complete set of identities is then given by N = NB ∪ S.30

28The distribution of B does not matter for lit auctions. For dark auctions, we assume that buyers
have common priors (Definition 16).

29This assumption implies that whenever there is more than one bidder in the auction, there is a
risk of shill bidding. Conversely, there does not exist a nontrivial number of bidders for which the
absence of shill bidding can be guaranteed.

30For any two distinct buyers i 6= j, the sets of identities controlled by them are disjoint, i.e.,
Ni ∩ Nj = ∅. Besides, the sets of identities controlled by buyers and the seller are disjoint, i.e.,
NB ∩ S = ∅.
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Importantly, all identities are indistinguishable from each other. Hence, the designer
cannot discriminate ex-ante between identities used by buyers and the seller, which neces-
sitates the design of an anonymous mechanism

(
ΓN, SN

)
. Each identity is treated as a

bidder (agent). Given the set of identities N , buyers and the seller play the game Γ|N |. For
simplicity, we will refer to a mechanism as an auction, and use the terms “identity” and
“bidder” interchangeably.

2.2.2 Auctions

For any fixed set of bidders N = NB ∪ S, the outcome xN = (qN , tN ) consists of the
allocation qN =

(
qN

i

)
i∈N

and the payment tN =
(
tN
i

)
i∈N

, where
∑

i∈N qN
i ≤ 1, qN

i ∈ [0, 1],
and tN

i ∈ R. The seller’s value for the item is normalized to zero. They desire revenue. The
utility function is

u0 =
∑

i∈NB

tN
i ,

which sums up the payments from all bidders (identities) controlled by buyers. Each buyer
i ∈ B has quasi-linear utilities,

ui =

∑
j∈Ni

qN
j

 θi −

∑
j∈Ni

tN
j

 .

The probability of buyer i obtaining the item is equal to the sum of the winning probabilities
of all identities controlled by buyer i. Similarly, the total payment for buyer i is the sum of
the payments associated with those identities.

An (anonymous) auction
(
ΓN, SN

)
induces an allocation rule q(Γn,Sn) (·) and a payment

rule t(Γn,Sn) (·) for all n ∈ N. For any set of bidders N ∈ N with |N | = n, the outcome
induced by the auction is given by

(
q(Γn,Sn) (θN ) , t(Γn,Sn) (θN )

)
= x(Γn,Sn) (θN ) = gΓn (Sn (θN )) ∀θN ∈ Θn.

We denote the collection of induced outcome rules
(
q(Γn,Sn), t(Γn,Sn)

)
n∈N

simply by (q, t)
to ease the notation. Specifically, for all n ∈ N, and all N ∈ N with |N | = n, we have
q (θN ) = q(Γn,Sn) (θN ) and t (θN ) = t(Γn,Sn) (θN ) for all θN ∈ Θn. This simplification is
justified by the anonymity of the auction, which ensures that the outcome depends solely on
the type profile and the number of bidders, and not on their identities.

Throughout the remainder of the text, we will use (q, t) to refer to the auction and will
not distinguish between auctions that are equivalent (Definition 3). In other words, we focus
on direct auctions. For example, we reinterpret the classic selling mechanisms in our setting
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as follows.31

1. The first-price auction: Run the first-price (or Dutch) auction for all N ∈ N .

2. The second-price auction: Run the second-price (or English) auction for all N ∈ N .

3. The posted-price mechanism: Run the same posted-price mechanism for all N ∈ N .32

Our definition of an auction differs from the standard one, because it is actually a
collection of standard auctions, each corresponding to a different finite number of bidders.
For example, the first-price auction in our setting is actually a collection of first-price auctions
in the standard setting, each corresponding to a different finite number of bidders |N |. In
general, we allow the outcome rule to vary with |N |. For instance, we can run the first-price
auction when there are no more than five bidders, and switch to the second-price auction
otherwise. We also allow for auctions with a cap on the number of bidders, by explicitly
taking into account the preselection stage (Example 2).33

Now that the auction has been defined, we can outline the complete game, taking into
account shill bidding.

1. The auctioneer publicly announces an auction (q, t).

2. A set of buyers B ∈ N is drawn, which is not revealed to any buyer or the seller.

3. Buyers learn their types privately and independently.

4. Each buyer i ∈ B and the seller simultaneously decide how many identities to employ
in the auction, i.e., Ni and S.

5. A standard auction starts with a fixed set of bidders N = NB ∪ S = (∪i∈BNi) ∪ S.

In practice, steps 4 and 5 can occur simultaneously if the auction allows entry after it begins.
If such an auction effectively deters the seller or buyers from shill bidding, it will continue
to do so even if entry is prohibited after the auction starts. All the results presented in

31The first-price auction and the Dutch auction induce the same outcome rule, as do the second-price
auction and the English auction.

32The posted-price mechanism is a take-it-or-leave-it offer. Ties are broken among bidders who
accept the posted price.

33In auctions that impose a cap on the number of participants, a preselection stage becomes
necessary whenever the number of interested buyers exceeds the specified threshold. This is consistent
with our framework, where for any N ∈ N , the designer initiates the preselection stage, if necessary,
prior to conducting the main auction. An extensive-form game can explicitly integrate the preselection
stage into the auction’s game structure. Such dynamic auctions are considered in this paper, though
we restrict attention to their induced outcome rules. We show in Section 5.3 that this restriction is
without loss, and provide further details on the implementation via extensive forms.
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this paper remain valid under conditions where entry is allowed after the auction begins.
Therefore, the distinction between steps 4 and 5 can be made without any loss of generality.

At the final step, we do not specify whether participants know how many bidders are
in the auction. The number of bidders in the auction is assumed common knowledge in
the standard auction theory (Vickrey, 1961; Myerson, 1981; Milgrom and Weber, 1982). In
our setting, whether the designer discloses this information becomes a design choice. In
principle, bidders can participate in the auction without the knowledge of the number of
bidders, because the auction format is publicly announced for any given number of bidders.
In fact, this is how many real-world auctions operate. At auction houses and online auction
platforms, no one really knows the exact number of bidders, and the same auction format is
simply fixed for all N ∈ N .34

Definition 4. A lit auction is an auction where the number of bidders |N | is common
knowledge. A dark auction is an auction where the number of bidders |N | is concealed.

Throughout the paper, we do not consider how buyers update their beliefs about the
number of buyers or whether the seller shill bids in the auction. This is justified by our
focus on auction formats that discourage shill bidding. In such auctions, shill bidding does
not arise in equilibrium, and buyers rationally believe every other bidder is a distinct buyer.
Because shill bidding is undetectable under anonymity, when we examine the incentives for
shill bidding in auctions designed to deter such behavior, buyers should maintain the belief
that all other bidders are distinct buyers.35 Consequently, in lit auctions, where the number
of bidders is common knowledge, buyers take it for granted that the number of buyers equals
the number of bidders.36 In dark auctions, where the number of bidders is concealed, they
act under the belief that the unobserved number of bidders always equals the number of
buyers.

In the following, we focus on auctions that are ex-post individually rational.

Definition 5. An auction is ex-post individually rational if, for all N ∈ N , all i ∈ N , and all
34At auction houses like Christie’s or Sotheby’s, due to the decline in physical attendance, bidders

do not know exactly how many others are participating online or by phone (Footnote 1). In eBay
auctions, bidders do not know how many “snipers” are watching the auction closely behind the
computer’s screen (Roth and Ockenfels, 2002). In Google’s advertising auctions, advertisers are
unaware of how many others are competing in the auction.

35In contrast, when analyzing auctions that do not effectively deter shill bidding—which lies outside
the scope of this paper—it would be inappropriate to assume that buyers believe all other bidders
are distinct buyers.

36For lit auctions, if P (|B| = k) = 0 for some k ∈ N, then buyers do not interpret the presence of k
bidders as evidence of shill bidding. Those are zero-probability events and are treated as off-path
information sets under weak perfect Bayesian equilibrium. In such cases, we assume buyers still hold
the belief that every other bidder is a distinct buyer, which is the most favorable scenario for shill
bidding.
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θN ∈ Θ|N |,
θiqi (θN ) − ti (θN ) ≥ 0.

The revenue of the auction is the sum of the payments from all buyers.

Definition 6. An auction is optimal if it maximizes expected revenue subject to ex-post
individual rationality.

A lit auction is optimal if it is optimal for each N ∈ N , whereas an optimal dark auction
does not entail it is optimal for each N ∈ N , due to the concealment of the number of
bidders (Section 4.2). Myerson (1981) characterizes the optimal (lit) auction’s allocation
rule in terms of the virtual valuation v(θi) = θi − 1−F (θi)

f(θi) .

Definition 7. The type distribution is regular, if the virtual valuation v (·) is strictly increasing.

We assume the type distribution is regular. The optimal reserve price ρ∗ is determined
by

ρ∗ = min {θi ∈ [0, 1]| v (θi) ≥ 0} .

Note that efficiency37 does not determine the payoffs of buyers of the lowest type. To
eliminate subsidies from the seller,38 we focus on efficient auctions that maximize expected
revenue, which is referred to as optimal efficiency.39

Definition 8. An auction is optimally efficient if it maximizes expected revenue subject to
ex-post individual rationality and efficiency.

In the following section, we explore identity compatibility in lit auctions, where the
number of bidders is common knowledge. When the context is clear, we simply refer to a lit
auction as an auction. We will turn to dark auctions in Section 4.

3 Identity Compatibility in Lit Auctions
Identity compatibility requires that the seller should have no incentive to participate in the
auction under the disguise of one or more bidders, and buyers should find it optimal to use
only their true identities, implying B = NB = N . To conduct a detailed analysis, we begin
by examining the incentives of buyers and the seller separately. Subsequently, in Section 5.1,
we consider identity compatibility for both parties jointly. Throughout, when referring to

37In this paper, an efficient auction is defined as a collection of standard efficient auctions for each
N ∈ N .

38When subsidies are available, an impractical way to deter shill bidding from the seller is to have
them provide higher subsidies as the number of bidders increases.

39We do not directly assume that buyers of the lowest type obtain zero payoffs.
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an auction as (q, t), we implicitly restrict attention to direct mechanisms. As discussed in
Section 5.3, this restriction entails no loss of generality.

3.1 Buyer Identity Compatibility
In this subsection, we first define the concept of Bayesian buyer identity compatibility and
illustrate how shill bidding distorts the auction format while expanding the strategy space for
buyers. We then introduce a natural strengthening—ex-post buyer identity compatibility—
which leads to our first main result: a characterization of the second-price auction in terms
of buyer identity compatibility.

Definition 9. An auction (q, t) is Bayesian buyer identity-compatible if, for all i ∈ N, all
θi ∈ Θ, all |Ni| ∈ N, and all θ̂1

Ni
, θ̂2

Ni
, · · · ∈ Θ|Ni|,

EB

[
Eθ−i∈Θ|B|−1 [θiqi (θi, θ−i) − ti (θi, θ−i)]

∣∣∣ i ∈ B
]

≥EB

Eθ−i∈Θ|B|−1

∑
j∈Ni

[
θiqj

(
θ̂

|B|
Ni

, θ−i

)
− tj

(
θ̂

|B|
Ni

, θ−i

)]∣∣∣∣∣∣ i ∈ B

 .

Bayesian buyer identity compatibility ensures that no buyer i ∈ B can gain an advan-
tage by unilaterally using multiple identities j ∈ Ni in expectation. The use of iterated
expectations arises because, at the time buyer i decides how many identities to employ in
the auction, i does not yet know the total number of buyers. In others words, buyer i must
commit to a specific number of identities for each realization of the set of buyers. Given this
commitment, their bidding strategies can still depend on the number of buyers.40

Notice that when |Ni| = 1, i.e., Ni = {i}, the above inequality is guaranteed by
lit Bayesian incentive compatibility. However, when |Ni| > 1, buyer i controls multiple
identities, creating opportunities for auction manipulation through shill bidding. This
manipulation operates through two channels. First, for each realized set of buyers B, every
buyer j ∈ B\ {i} believes there are |N | buyers in the auction, while only buyer i knows the
actual number of buyers in the auction is |B|, which is less than |N |. Consequently, the
auction format is distorted: instead of conducting the specific auction corresponding to |B|
buyers, the game follows the one corresponding to |N | buyers. Second, the strategy space
for buyer i is expanded by leveraging multiple identities. Buyer i can formulate bidding
strategies represented by the type profile θ̂

|B|
Ni

∈ Θ|Ni|. The identities controlled by buyer

40If the auction allows entry after it begins, then buyer i is not required to commit in advance.
For such auctions, Bayesian buyer identity compatibility ensures that the above inequality holds for
each realized set of buyers B, even after removing the outer expectation.
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i can collude, effectively acting as a bidding ring or cartel.41 Truthful reporting of types
is guaranteed under lit Bayesian incentive compatibility in the absence of shill bidding.
However, in the presence of shill bidding, there are double deviations, where buyers misreport
both their types and their identities. As a result, it may no longer be optimal for buyer i to
bid truthfully, i.e., θ̂j = θi for all j ∈ Ni.

In the following two examples, we will illustrate how shill bidding impacts the auction
through the two channels discussed above. The first example focuses on how it distorts the
auction format, while the second highlights its role in expanding the strategy space.

Example 1. Consider the first-price auction. It is optimal for buyer i to bid as if θ̂j = θ̂j′

for all j, j′ ∈ Ni, since submitting a losing bid provides no advantage. The only potential
benefit of using multiple identities comes from the increased chance of winning in case of a
tie. However, in the continuous type space, the probability of a tie is zero. Thus, expanding
the strategy space through multiple identities offers no advantage in the first-price auction.
Moreover, this manipulation carries a cost: it distorts the auction format. Buyers other
than i perceive a more competitive standard first-price auction with a greater number of
bidders.42 The presence of additional bidders (identities) drives up competition, leading
other buyers to bid higher. As a result, securing a win becomes more expensive for buyer i.
Hence, buyers have no incentive to use multiple identities in the first-price auction, as it
would only increase their winning payment without improving their chances of winning.

Fact 1. The first-price auction is Bayesian buyer identity-compatible.

Example 2. Consider the following two-stage auction analyzed in Seibel and Škoda (2023).43

In the preselection stage, bidders submit sealed bids, and a pre-announced, limited number
of bidders with the highest bids advance. In the main stage, an English auction takes place,
with the highest bid from the preselection stage serving as the starting price.44

Notice that the auction format is fixed in the main stage as an English auction with
a fixed number of slots. As a result, using multiple identities cannot distort the auction
format in the main stage. Instead, the advantage of employing multiple identities lies in the

41The analogy is made intuitively, as cartel members differ from identities. A buyer has full control
over identities, whereas cartel members may cheat on each other. Moreover, cartels consist of distinct
buyers, while identities are merely duplicates of the same buyer. For the literature on collusion in
auctions, see Robinson (1985), Graham and Marshall (1987), Mailath and Zemsky (1991), McAfee
and McMillan (1992), and Chassang and Ortner (2019).

42We consider standard first-price auctions with different finite numbers of bidders as distinct
standard auctions.

43This is a dynamic auction. As discussed in Section 5.3, all results hold under dynamic auctions,
although the focus is primarily on the induced outcome rule.

44This is a Dutch-Anglo auction—not an Anglo-Dutch auction (Klemperer, 1998).
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expanded strategy space. The identities (bidders) controlled by a firm essentially form a
cartel. This cartel can submit tying high bids to try to occupy all slots in the main stage,
thereby kicking out competitors.45 Only rival firms who outbid the cartel can then proceed
to the main stage. If the cartel successfully crowds out all competitors from participating in
the main stage, the English auction will conclude at the reserve price, with all but one bidder
dropping out immediately.46 This allows the firm controlling the cartel to win at a low cost.
Using multiple identities is profitable because the exclusion of competitors forestalls price
competition in the main stage.

Seibel and Škoda (2023) develop these theoretical predictions, and empirically validate
them by using administrative data on public procurement auctions in Slovakia, along with a
court-confirmed cartel case. Their findings demonstrate that this two-stage auction fails
Bayesian buyer identity compatibility.47 In general, multistage auctions that incorporate a
preselection stage may be susceptible to shill bidding by buyers, as they can use multiple
identities to crowd out competitors.

A natural strengthening of Bayesian buyer identity compatibility is the following concept:

Definition 10. An auction (q, t) is ex-post buyer identity-compatible if, for all i ∈ N, all
θi ∈ Θ, and all |Ni| ∈ N,

EB

[
Eθ−i∈Θ|B|−1 [θiqi (θi, θ−i) − ti (θi, θ−i)]

∣∣∣ i ∈ B
]

≥EB

Eθ−i∈Θ|B|−1

 sup
θ̂Ni

∈Θ|Ni|

∑
j∈Ni

[
θiqj

(
θ̂Ni , θ−i

)
− tj

(
θ̂Ni , θ−i

)]∣∣∣∣∣∣ i ∈ B

 .

Ex-post buyer identity compatibility ensures that no buyer i ∈ B can gain an advantage
by unilaterally using multiple identities j ∈ Ni in any case, although i has to commit to the
number of identities in advance. When |Ni| = 1, i.e., Ni = {i}, the above inequality reduces
to

EB

[
Eθ−i∈Θ|B|−1 [θiqi (θi, θ−i) − ti (θi, θ−i)]

∣∣∣ i ∈ B
]

45Competitors will place higher bids in the preselection stage due to the presence of more bidders
(identities). However, this effect is limited since the preselection stage influences the winning payment
only by setting the starting price for the main stage.

46The buyer’s immediate withdrawal during the main stage represents an off-path deviation, which
is not profitable when using a single identity, as such a withdrawal results in losing the auction.
However, by employing multiple identities simultaneously, the buyer can crowd out competitors and
secure the auction by withdrawing all but one identity at once. See Section 5.3 for further discussion
of off-path deviations.

47Conversely, when an auction is not Bayesian buyer identity-compatible, concerns about collusion
arise.
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≥EB

[
Eθ−i∈Θ|B|−1

[
sup
θ̂i∈Θ

[
θiqi

(
θ̂i, θ−i

)
− ti

(
θ̂i, θ−i

)]]∣∣∣∣∣ i ∈ B

]
.

Notice that for all |B| ∈ N and all θ−i ∈ Θ|B|−1, we always have

sup
θ̂i∈Θ

[
θiqi

(
θ̂i, θ−i

)
− ti

(
θ̂i, θ−i

)]
≥ θiqi (θi, θ−i) − ti (θi, θ−i) .

Hence, to achieve ex-post buyer identity compatibility when |Ni| = 1, we must have

θiqi (θi, θ−i) − ti (θi, θ−i) = sup
θ̂i∈Θ

[
θiqi

(
θ̂i, θ−i

)
− ti

(
θ̂i, θ−i

)]
,

which implies strategy-proofness.48

Lemma 1. Ex-post buyer identity compatibility implies strategy-proofness.

The converse is generally not true.49 For instance, while the posted-price mechanism is
strategy-proof, it is not even Bayesian buyer identity-compatible. This is because buyers
can always exploit multiple identities to increase the chance of winning in case of a tie.50

However, such benefit does not emerge in the second-price auction, because buyers obtain
zero payoffs in case of a tie. In fact, the second-price auction is not only ex-post buyer
identity-compatible but also the unique auction that simultaneously guarantees optimality
(or optimal efficiency).51

Theorem 1. The second-price auction with the reserve price ρ∗ is the unique optimal
auction that is ex-post buyer identity-compatible. The second-price auction is the unique
optimally efficient auction that is ex-post buyer identity-compatible.

The proof is relegated to Appendix A.1. Theorem 1 follows directly from Lemma 1. In
the continuous type space, the second-price auction is characterized by strategy-proofness
and (optimal) efficiency, as established by Green and Laffont (1977) and Holmström (1979).

48In this paper, a strategy-proof auction is defined as a collection of standard strategy-proof
auctions for each B ∈ N . For direct auctions, strategy-proofness is equivalent to ex-post incentive
compatibility.

49As noted in Footnote 41, using multiple identities is different from forming a cartel. Likewise,
group-strategy-proofness and ex-post buyer identity compatibility are conceptually distinct, with
neither being inherently stronger than the other. For instance, while the posted-price mechanism is
group-strategy-proof, it is not ex-post buyer identity-compatible. Conversely, as we will see next, the
second-price auction is ex-post buyer identity-compatible, but it fails to be group-strategy-proof.

50As a direct consequence of anonymity, the symmetric tie-breaking rule is applied.
51Since we do not differentiate between equivalent auctions (Definition 3) and study the continuous

type space, uniqueness is defined up to outcome equivalence and a set of measure zero.
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However, this characterization under strategy-proofness does not directly extend to the
finite type space. In Section 5.3, we extend Theorem 1 to the finite type space (Theorem 6),
demonstrating that the characterization under ex-post buyer identity compatibility is novel,
as it applies to both finite and continuous type spaces.

3.2 Seller Identity Compatibility
Now, we apply the analytic approach used for buyers in the previous subsection to examine
the seller’s incentives for shill bidding.

Definition 11. An auction (q, t) is Bayesian seller identity-compatible if, for all |S| ∈ N, and
all θ1

S , θ2
S , · · · ∈ Θ|S|,

EB

[
EθB∈Θ|B|

[∑
i∈B

ti (θB)
]]

≥ EB

[
EθB∈Θ|B|

[∑
i∈B

ti

(
θB, θ

|B|
S

)]]
.

Bayesian seller identity compatibility ensures that the seller cannot raise expected revenue
by committing to a set of identities S. Unlike buyers, who attempt to lower their payments
by using multiple identities, the seller aims to push up the payment of the winning buyer
by exploiting multiple identities. In particular, the seller avoids winning the auction, as
doing so results in no sale. Given the focus on ex-post individually rational auctions, a
safe strategy for the seller is to bid as if their type is zero. Therefore, any Bayesian seller
identity-compatible auction must pass the following bidding-zero test.

Definition 12. An auction (q, t) passes the bidding-zero test if, for all |S| ∈ N,

EB

[
EθB∈Θ|B|

[∑
i∈B

ti (θB)
]]

≥ EB

EθB∈Θ|B|

∑
i∈B

ti

θB, 0, . . . , 0︸ ︷︷ ︸
|S| times



 .

The bidding-zero test provides a quick method to determine that an auction is not
Bayesian seller identity-compatible if it fails the test. For example, the first-price auction is
not Bayesian seller identity-compatible because the seller can artificially inflate the number
of bidders in the auction, thus manipulating the perceived competition among buyers—under
the assumption that they believe each bidder is a distinct buyer.52 All else being equal, the
more bidders in the auction, the higher the winning payments for buyers of any type.

52Since the first-price auction is not Bayesian seller identity-compatible, it would be inappropriate
to assume that buyers believe each bidder is a distinct buyer. However, when evaluating whether the
first-price auction satisfies Bayesian seller identity compatibility, we examine the incentives for shill
bidding under the assumption that buyers believe each bidder is a distinct buyer. The reasoning
follows the same structure as a proof by contradiction.
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Although related, Bayesian seller identity compatibility differs from the concept of
credibility introduced by Akbarpour and Li (2020). In their paper, the auctioneer can
manipulate the auction history subject to the constraint that it aligns with the auction
format. Crucially, the auctioneer can misrepresent the preferences of buyers, but the auction
format is fixed in terms of the number of buyers. Hence, the auctioneer cannot misrepresent
the number of buyers by introducing shill bidders.

In contrast, Bayesian seller identity compatibility assumes that the auctioneer commits to
a collection of auction formats that may vary with the number of bidders. We conceptualize
the auctioneer as a third party with reputational concerns, such as auction houses or online
platforms. The seller, who is distinct from the auctioneer, can only influence the winning
payment by participating in the auction. The seller does not have access to the same
information the auctioneer receives from bidders. In other words, the seller’s available
strategies and information sets are no different from any other bidder’s. Although the seller
cannot misrepresent the preferences of buyers, the seller can distort the auction format by
employing multiple identities. Such manipulation is not considered in Akbarpour and Li
(2020). As a result, we have the following fact:

Fact 2. The first-price auction is credible but not Bayesian seller identity-compatible.

Consider the second-price auction. The type the seller pretends to be effectively acts as
a reserve price, since buyers with lower types cannot win.53 However, when the reserve price
has already been optimally set at ρ∗, the seller finds it unprofitable to participate, as noted
by Izmalkov (2004).54

Proposition 1 (Izmalkov (2004)). The second-price auction with the reserve price ρ∗ is
Bayesian seller identity-compatible.

However, the second-price auction can be easily manipulated by the seller, if the seller
possesses more than just distributional knowledge of buyers’ types. To address this, we
propose the following stronger notion of seller identity compatibility.

Definition 13. An auction (q, t) is ex-post seller identity-compatible if, for all |S| ∈ N,

EB

[
EθB∈Θ|B|

[∑
i∈B

ti (θB)
]]

≥ EB

[
EθB∈Θ|B|

[
sup

θS∈Θ|S|

∑
i∈B

ti (θB, θS)
]]

.

53In the continuous type space, there is no risk of winning the tie for the seller when participating
in the auction. In Online Appendix B.1, we show that a similar result holds in the finite type space
(Proposition 5).

54Not every optimal auction is Bayesian seller identity-compatible. For instance, the first-price
auction with the reserve price ρ∗ is optimal but not Bayesian seller identity-compatible, since it fails
the bidding-zero test.
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Ex-post seller identity compatibility ensures that even if the seller observes the buyers’
type profile, the seller still cannot raise expected revenue when committing to a set of
identities. In other words, it is strategy-proof for the seller not to participate in the auction
by pretending to be multiple bidders. While we do not consider it realistic to assume that
the seller has full knowledge of the buyers’ type profile, this concept broadly captures the
idea that any violation of ex-post seller identity compatibility implies the existence of some
information that, if available to the seller, would create an incentive to manipulate the
auction by shill bidding. Notably, this information does not need to be perfect.

The posted-price mechanism is ex-post seller identity-compatible because the winning
payment is fixed. However, it suffers from both efficiency and revenue losses. In contrast,
the second-price auction (with reserve) is optimal, but the seller can always increase the
winner’s payment when there is no tie, i.e., when there is a gap between the highest and
second-highest bids.

In general, the seller faces a dilemma. On one hand, competition among bidders is
crucial for maximizing revenue. On the other hand, the seller has an incentive to exploit
this competition—by leveraging identities—to further increase the winning payment. In lit
auctions, optimality requires that the expected revenue is maximized for any given number
of buyers. This inherent conflict of interest ultimately leads to an impossibility result.

Theorem 2. No optimal lit auction is ex-post seller identity-compatible. No optimally
efficient auction is ex-post seller identity-compatible.

Note that we impose no restrictions on the auction format. The optimal lit auction can
be implemented in any static or dynamic format.55 Therefore, Theorem 2 presents a broad
impossibility result, highlighting the conflict between revenue maximization and the creation
of fake competition through identities.

We provide a brief outline of the proof, which relies on two key observations. First, we
identify the first-price auction (with reserve) as the optimal lit auction that poses the greatest
challenge for the seller to manipulate via identities. Given that the seller shill bids in the
first-price auction by committing to a set of identities, the payment conditional on winning
for buyers of each type is fixed, eliminating further opportunities for manipulation. Second,
in any optimal lit auction, the expected payment for buyers of each type is determined for any
given number of buyers. Importantly, while the expected payment decreases as the number of
buyers increases—due to the lower probability of winning—the expected payment conditional
on winning actually increases. When the seller participates in the auction, they never win.
Consequently, the same buyer who would have won in the seller’s absence still wins, but ends

55See Section 5.3 for a detailed discussion on implementation via extensive forms.

22



up paying more. This is because the expected payment conditional on winning increases
with additional bidders, even if the auction format might have changed due to the seller’s
participation. As a result, the seller always profits from shill bidding in optimal lit auctions.
The same logic extends to efficient auctions that maximize expected revenue—optimal
efficient auctions—by removing the reserve price, leading to a corresponding impossibility
result. The full proof of Theorem 2 is provided in Appendix A.2.

Our impossibility result contrasts with the findings of Komo, Kominers and Roughgarden
(2024), who establish the Dutch auction as the unique optimal public auction that prevents
shill bidding by the seller.56 This difference stems from their distinct definition of shill
bidding—where bids of zero are not considered shill bids—and their assumption of a fixed
number of bidders. Consequently, their model shuts down the channel that shill bidding
can influence the auction format by increasing the number of bidders. In particular, the
seller cannot intensify the perceived competition among buyers by leveraging more identities
(bidders). As we noted earlier, the first-price (or Dutch) auction is not Bayesian seller
identity-compatible, as it fails the bidding-zero test.

Given the impossibility result, we aim to identify the best auction for the seller—one
that not only eliminates any suspicion of shill bidding but also maximizes expected revenue.
In particular, we take into account the possibility that the auctioneer colludes with the seller,
which further strengthens ex-post seller identity compatibility.

Definition 14. An auction (q, t) is ex-post auctioneer identity-compatible if, for all B ∈ N
and all |S| ∈ N∪ {0},

EθB∈Θ|B|

[∑
i∈B

ti (θB)
]

≥ EθB∈Θ|B|

 sup
i∈B,θS∈Θ|S|

qi(θB ,θS)>0

ti (θB, θS)
qi (θB, θS)

 .

Compared to ex-post seller identity compatibility, there are two key differences. First,
we no longer take the outer expectation, meaning the seller does not need to commit to
the number of identities in advance. Instead, the auctioneer may either secretly disclose
the number of buyers to the seller or, in some cases, the seller and auctioneer may be the
same entity. Second, when a random allocation is involved, the auctioneer’s randomization
device cannot be trusted.57 In practice, verifying whether randomization is conducted

56They derive this result in the finite type space. In Online Appendix B.4, we show that Theorem 2
holds in the finite type space. In addition to what have discussed in this paragraph, our approach
differs from theirs in how we handle ties, which occur with positive probability in the finite type
space. For further details, see Section B.1.

57This concern also motivates the concept of ex post deterministic implementation in Dworczak
(2020).
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properly is often challenging. If the allocation rule requires that the item remains unsold
with some probability, the auctioneer can always choose to sell it to ensure payment from
the buyer. Moreover, when a tie-breaking decision is needed, the auctioneer can always favor
the buyer who offers the highest payment conditional on winning. These deviations remain
undetectable to buyers, even if they share information after the auction.58 In other words,
ex-post auctioneer identity compatibility accounts for the safest deviations from auction
rules when the seller can collude with the auctioneer.

The posted-price mechanism is ex-post auctioneer identity-compatible, but it incurs
losses in both efficiency and revenue. As the next theorem shows, these losses are inevitable
in lit auctions if the seller aims to eliminate any suspicion of shill bidding.

Theorem 3. The posted-price mechanism maximizes expected revenue among all lit auctions
that are ex-post auctioneer identity-compatible.

Theorem 3 demonstrates that concerns over the seller or auctioneer steering the auction
in their favor completely tie their hands. This result is striking because it does not rely on
any distributional assumption about the number of buyers.59 Compared to Shinozaki (2024),
we do not restrict attention to deterministic auctions and do not impose strategy-proofness.
While the exact posted price varies with the details, a posted-price mechanism always
achieves the maximum expected revenue in lit auctions, subject to the constraint of ex-post
auctioneer identity compatibility. The proof hinges on the observation that the payment
made by any winning buyer, given any type profile of the other buyers, is bounded by
the payment that same buyer would make if they were the only one. (See Appendix A.3
for details.) The intuition is that if competition among bidders drives up revenue, the
seller is tempted to simulate this competition using fake identities. The elimination of
this temptation leads to the rigidity of the payment. Theorem 3 provides an additional
explanation for the widespread use of posted-price mechanisms in practice, beyond their
simplicity.60

4 Dark Auctions
Theorem 3 highlights the revenue loss the seller must incur to maintain ex-post auctioneer
identity compatibility. Meanwhile, the impossibility result in Theorem 2 suggests that
we should look beyond lit auctions for optimal auctions that are ex-post seller identity-
compatible. As discussed in the model section, bidders can participate in the auction

58It is similar to group-credibility in Akbarpour and Li (2020).
59We only need P (|B| = 1) > 0.
60Many sellers on eBay choose the posted-price mechanism over the English auction.
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without knowing the exact number of bidders, because the specific auction format is publicly
announced for any given number of bidders. In practice, many auctions operate this way.
For instance, auction houses and online platforms typically do not disclose the number of
interested bidders. Furthermore, with the rise of remote participation, many auctions no
longer require bidders to be physically present, making it difficult for the auctioneer to know
the exact number of bidders (Footnote 1 and 34).

In the following, we begin by introducing the concept of dark mechanisms and examining
their relationship to lit mechanisms, demonstrating that dark mechanisms allow for the
implementation of a broader range of outcome rules. We then explore the implications of
this broader range for the design of optimal dark auctions. Finally, we revisit the notion of
identity compatibility in dark auctions and illustrate how the transition to dark auctions
overcomes the impossibility result present in lit auctions.

4.1 Dark Mechanisms
We follow the notation in Section 2.1. Consider a collection of games ΓN =

(
ΓN
)

N∈N
,

which can be simplified as ΓN = (Γn)n∈N under anonymity. When the number of agents is
concealed, agents are allowed to play contingent strategies, i.e., a collection of strategies
that depend on the number of agents. Recall that Σn denotes the set of strategies for each
agent in the game Γn. When allowing for contingent strategies, we denote the strategy
space for each agent by Σd, which is a subset of ×n∈NΣn. Importantly, Σd does not have
to be identical to ×n∈NΣn. In fact, the design of dark mechanisms involves not only the
design of the collection of games ΓN, but also the design of the strategy space Σd. As in lit
mechanisms (see Footnote 27), we focus on symmetric equilibria. Let Sd = (Sn)n∈N denote
the type-strategy for each agent in the collection of games ΓN that maps from types to
strategies, i.e., Sd : Θ → Σd.

Definition 15.
(
ΓN, Σd, Sd

)
is dark Bayesian incentive-compatible if, for all i ∈ N and all

θi ∈ Θ,
Sd (θi) ∈ arg max

σd∈Σd

∑
n∈N

pi (n)Eθ−i∈Θn−1

[
ui

(
gΓn (σn, Sn (θ−i)) , θi

)]
,

where pi (n) = P ( |B| = n| i ∈ B) is agent i’s belief that the number of agents is n.

We call
(
ΓN, Σd, Sd

)
a dark mechanism if it is dark Bayesian incentive-compatible. The

term “dark” highlights the assumption that the number of agents participating in the game is
concealed. Our first observation establishes the connection between dark and lit mechanisms.

Proposition 2. Every lit mechanism induces an equivalent dark mechanism.
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Proof. Consider any lit mechanism
(
ΓN, SN

)
. Lit Bayesian incentive compatibility (Defini-

tion 2) implies that for all n ∈ N, all i ∈ N, all θi ∈ Θ, and all σn ∈ Σn,

Eθ−i∈Θn−1

[
ui

(
gΓn (Sn (θi) , Sn (θ−i)) , θi

)]
≥Eθ−i∈Θn−1

[
ui

(
gΓn (σn, Sn (θ−i)) , θi

)]
.

By summing over all n ∈ N weighted by agent i’s belief about the number of agents, we have

∑
n∈N

pi (n)Eθ−i∈Θn−1

[
ui

(
gΓn (Sn (θi) , Sn (θ−i)) , θi

)]
≥
∑
n∈N

pi (n)Eθ−i∈Θn−1

[
ui

(
gΓn (σn, Sn (θ−i)) , θi

)]
.

Hence,
(
ΓN, Σd, Sd

)
is dark Bayesian incentive-compatible, where Σd = ×n∈NΣn and Sd =

(Sn)n∈N. By construction, the two mechanisms induce the same outcome rule, and thus they
are equivalent.

The proof of Proposition 2 highlights the key distinction between lit and dark mechanisms.
Lit Bayesian incentive compatibility constraints are satisfied ex-post, meaning they hold
for each n ∈ N individually. In contrast, dark mechanisms only demands dark Bayesian
incentive compatibility constraints—weighted sums of all lit Bayesian incentive compatibility
constraints—to be satisfied ex-ante. The converse of Proposition 2 is generally not true. In
other words, not every dark mechanism has an equivalent lit mechanism. This discrepancy
arises because the strategy space in a dark mechanism may differ from the Cartesian product
of the strategy spaces in a lit mechanism, as illustrated in the following example.

Example 3. The dark first-price auction game operates as follows. Each bidder submits a
single bid without knowing the number of bidders in the game. The highest bidder wins
and pays their bid, with ties broken uniformly at random. In contrast to the (lit) first-price
auction game—where bidders of the same type may submit different bids after observing
different numbers of bidders—bidders in the dark game must submit the same bid regardless
of the number of bidders. Hence, the strategy space Σd in the dark first-price auction game
is different from the strategy space ×n∈NΣn in the (lit) first-price auction game:

Σd =
{

σd = (σn)n∈N ∈ ×n∈NΣn
∣∣∣ ∀i, j ∈ N, σi = σj

}
( ×n∈NΣn.

Assume that equilibria exist, which we will discuss later. Let βd denote the equilibrium
bidding strategy in the dark first-price auction, and βn denote the equilibrium bidding
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strategy in the first-price auction with n bidders. Clearly, βd fails to satisfy all Bayesian
incentive compatibility constraints in the first-price auction with n bidders for all n ∈ N,
unless βi = βj for all i, j ∈ N, which is generally not the case.

Example 3 shows that the converse of Proposition 2 does not generally hold. It gives
a hint of the complexity involved in designing dark mechanisms, arising from the design
of the strategy space Σd and its interaction with the design of games ΓN. This complexity
is absent in lit mechanisms, opening new possibilities for the design of dark mechanisms.
A key message from Proposition 2 and Example 3 is that the expanded design space for
dark mechanisms may enable the implementation of outcome rules that are unattainable in
lit mechanisms. In the following, we explore the implications of this message for designing
optimal dark auctions. In particular, we examine whether dark auctions generate higher
expected revenue compared to lit auctions.

4.2 Optimal Dark Auctions
At first sight, this optimization problem seems quite challenging, as the design space is larger
than that of lit auctions. However, an extension of the Revelation Principle (Myerson, 1981)
suggests we can restrict our attention, without loss of generality, to a small subset of dark
auctions, called “direct dark auctions.” We follow the notation in Section 2.2. The proof is
relegated to Appendix A.4.

Lemma 2. Any dark auction
(
ΓN, Σd, Sd

)
induces an equivalent truth-telling direct dark

auction
(
qd, td, S̃d

)
, where S̃d : Θ → Θ, qd : Θ|N | → R|N |

+ such that
∑

i∈N qd
i ≤ 1 and

td : Θ|N | → R|N | for all N ∈ N , which implements the same mapping from type profiles to
allocations and payments.

Now we focus on direct dark auctions
(
qd, td

)
, where we omit the truth-telling equilibrium

strategies.
Let Qd

i (θi) be the probability of buyer i of type θi winning the dark auction, and Qn
i (θi)

be the probability of buyer i of type θi winning the dark auction when the number of buyers
is n ∈ N. Then, we have

Qd
i (θi) =

∞∑
n=1

pi (n)Eθ−i∈Θn−1

[
qd

i (θi, θ−i)
]

=
∞∑

n=1
pi (n) Qn

i (θi) ,

where pi (n) = P ( |B| = n| i ∈ B) is buyer i’s belief that the number of buyers is n. Notice
that this expression resembles the one for lit auctions, with the key difference being the
inclusion of uncertainty regarding the number of buyers.
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Let T d
i (θi) be the expected payment of buyer i of type θi in the dark auction, and T n

i (θi)
be the expected payment of buyer i of type θi in the dark auction when the number of
buyers is n. Then, we have

T d
i (θi) =

∞∑
n=1

pi (n)Eθ−i∈Θn−1

[
td
i (θi, θ−i)

]
=

∞∑
n=1

pi (n) T n
i (θi) .

Let Ud
i (θi) be the expected utility of buyer i of type θi in the dark auction, and Un

i (θi)
be the expected utility of buyer i of type θi in the dark auction when the number of buyers
is n. Dark Bayesian incentive compatibility implies that, for all i ∈ N, and all θi, θ′

i ∈ Θ,

Ud
i (θi) = θiQ

d
i (θi) − T d

i (θi) =
∞∑

n=1
pi (n) (θiQ

n
i (θi) − T n

i (θi))

≥ θiQ
d
i

(
θ′

i

)
− T d

i

(
θ′

i

)
=

∞∑
n=1

pi (n)
(
θiQ

n
i

(
θ′

i

)
− T n

i

(
θ′

i

))
.

In contrast, lit Bayesian incentive compatibility implies that, for all i ∈ N, and all θi, θ′
i ∈ Θ,

Un
i (θi) = θiQ

n
i (θi) − T n

i (θi) ≥ θiQ
n
i

(
θ′

i

)
− T n

i

(
θ′

i

)
∀n ∈ N.

As discussed in Proposition 2 and Example 3, switching from lit auctions to dark auctions
leads to a relaxation of incentive compatibility constraints—these constraints hold ex-ante
rather than ex-post for each n ∈ N. As a result, dark auctions implements more outcome
rules than lit auctions. The primary question we must address is whether dark auctions
yield higher expected revenue than lit auctions.

The answer is no. As first noted by McAfee and McMillan (1987b), dark auctions
generate exactly the same highest expected revenue as lit auctions. To ensure clarity and
completeness, we provide a proof tailored to our setting (Appendix A.5). We begin by
presenting the payoff equivalence lemma for dark auctions.

Lemma 3. Consider a direct dark auction
(
qd, td

)
. Then for all i ∈ N and all θi ∈ Θ, we

have

Ud
i (θi) = Ud

i (0) +
∫ θi

0
Qd

i (x) dx,

T d
i (θi) = T d

i (0) + θiQ
d
i (θi) −

∫ θi

0
Qd

i (x) dx.

Proof. See Myerson (1981).

Next, we show that the Revenue Equivalence Theorem (Myerson, 1981; Riley and
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Samuelson, 1981) extends to dark auctions. The expected payment from buyer i is

Eθi∈Θ
[
T d

i (θi)
]

= T d
i (0) + Eθi∈Θ

[
θiQ

d
i (θi) −

∫ θi

0
Qd

i (x) dx

]

= T d
i (0) +

∫ 1

0

[
θiQ

d
i (θi) f (θi) − Qd

i (θi) (1 − F (θi))
]

dθi

= T d
i (0) + Eθi∈Θ

[
Qd

i (θi) v (θi)
]

,

where v (θi) = θi − 1−F (θi)
f(θi) . However, to calculate the total expected revenue for the seller,

denoted by πd, we cannot simply sum this expression over all i ∈ N, because the set of buyers
B is random. Buyer i may belong to the realized set of buyers (i ∈ B) in some cases, but
not in others. When doing the summation, we have to account for that. It turns out that
we must weight the expected payment from buyer i exactly by the respective probability
that i is included in the realized set of buyers.

Proposition 3 (McAfee and McMillan (1987b)). The expected revenue of a direct dark
auction

(
qd, td

)
can be expressed as

πd =
∑
i∈N

P (i ∈ B)Eθi∈Θ
[
T d

i (θi)
]

=
∑

B∈N
P (B = B)EθB∈Θ|B|

[∑
i∈B

qd
i (θB) v (θi)

]

+
∑
i∈N

P (i ∈ B) T d
i (0) .

Ex-post individual rationality requires that T d
i (0) ≤ 0. The expected revenue πd is

maximized when
∑

i∈B qd
i (θB) v (θi) is maximized for all B ∈ N , meaning that the dark

auction always allocates the item to the buyer of the highest type conditional on being above
the reserve price ρ∗. Notice that the dark second-price auction is equivalent to the (lit)
second-price auction, because the number of buyers is irrelevant. Optimality (Definition 6)
in dark auctions can be achieved by running the dark second-price auction with the reserve
price ρ∗, which also attains optimality in lit auctions. Thus, we arrive at the following result.

Corollary 1. Optimal dark auctions generate the same expected revenue as optimal lit
auctions.

Although dark auctions cannot yield higher expected revenue than lit auctions, the
relaxation of incentive compatibility constraints allows for a broader range of outcome rules
to achieve optimality—rules that are not implementable in lit auctions. To illustrate this,
let us revisit the dark first-price auction in Example 3. To ensure the existence of symmetric
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equilibrium, we assume that buyers have common priors about the number of buyers in the
dark auction.61

Definition 16. Buyers have common priors about the number of buyers in the dark auction
if, for all n ∈ N, there exists p(n) such that p(n) = P ( |B| = n| i ∈ B) for all i ∈ N.

Now we derive and verify the symmetric equilibrium bidding function βd : Θ →
{0} ∪ [ρ∗, +∞) in the dark first-price auction with the reserve price ρ∗.62 In a symmetric
equilibrium, placing higher bids strictly increases the probability of winning. Dark Bayesian
incentive compatibility implies that the probability of winning Qd is increasing in buyers’
types. Therefore, βd is increasing in buyers’ types. Moreover, any symmetric equilibrium
bidding function must be strictly increasing on the subdomain of types where θ ≥ ρ∗.
Otherwise, the auction would end in a tie with probability ε > 0 with several buyers bidding
the same amount b ≥ ρ∗ and each strictly prefers to win at the price b. In this case, a buyer
who bids b could increase the expected payoff by bidding slightly more, say b′ > b. This will
increase the probability of winning by at least ε at the cost of b′ − b, which can be made
arbitrarily small, proving that the candidate bidding function is not an equilibrium.63

With a strictly increasing symmetric equilibrium bidding function, the dark first-price
auction with the reserve price ρ∗ induces the same allocation rule as the dark second-price
auction with the reserve price ρ∗. Because buyers of type zero obtain payoffs of zero in
both auctions, Proposition 3 implies that both auctions are optimal and Lemma 3 ensures
that the expected payoffs of all types must be identical in both auctions. Therefore, the
only possible symmetric equilibrium bidding function is the one that equates the expected
payments in both auctions for all types: for all θi ≥ ρ∗,

βd (θi) ×
[ ∞∑

n=1
p(n)F n−1 (θi)

]
=

∞∑
n=1

p(n)Eθ−i∈Θn−1

[
1θi≥max{θ−i,ρ∗} × max {θ−i, ρ∗}

]
.

The left-hand side is the equilibrium bid times the probability of winning in the dark first-
price auction, while the right-hand side is the expected payment in the dark second-price

61The exact process of how these common priors are generated is not crucial. To give an example,
let A = {1, 2, . . . , n} be a set of potential buyers. The set of buyers B is generated by selecting each
buyer in the set A independently with the same probability. Then, for all buyers in the set B, they
share the same prior about the number of buyers |B|.

62Without loss of generality, a buyer whose type is below the reserve price ρ∗ is assumed to bid
zero.

63The argument follows the same logic as in Milgrom (2004).
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auction. After performing the calculation, we obtain64

βd (θ) = θ −
∫ θ

ρ∗
[∑∞

n=1 p(n)F n−1 (x)
]
dx∑∞

n=1 p(n)F n−1 (θ) .

We have identified βd as the unique candidate for the symmetric equilibrium bidding
function.65 It is straightforward to verify that the bidding function βd constitutes an
equilibrium, as it satisfies Lemma 3. (See Myerson (1981) for details.)

Definition 17. Assume common priors. The dark first-price auction game with the reserve
price ρ∗ admits a unique symmetric equilibrium bidding function βd. We refer to this game
with the strategy βd as the dark first-price auction with the reserve price ρ∗.

This auction generates the same expected revenue as the (lit) first-price auction with
the reserve price ρ∗, as both are optimal. However, they generate different expected revenue
for the same realized set of buyers. In other words, they implement different outcome rules
to achieve optimality. In particular, the outcome rule implemented by the dark first-price
auction cannot be implemented in lit auctions. This is a key advantage of dark auctions.
We will see in the next subsection that this advantage can be leveraged to achieve identity
compatibility and optimality at the same time.

4.3 Identity Compatibility in Dark Auctions
First, observe that in (direct) dark auctions, the deviation strategy under multiple identities
cannot depend on the number of bidders, because the deviator no longer observes it.66

Accordingly, we impose that θ̂
|B|
Ni

= θ̂Ni and θ̂
|B|
S = θ̂S for all |B| ∈ N in Bayesian identity

compatibility for dark auctions (Definition 9 and 11). We omit the formal definitions for
brevity. Apart from this adjustment, all notions of identity compatibility for lit auctions
carry over directly to dark auctions.67

64We define F 0 (·) = 1.
65Notice that the equilibrium bidding function reduces to the conventional one when the distribution

of the number of buyers degenerates.
66This is because we focus on direct auctions. In indirect dark auctions, the deviation strategy

under multiple identities could possibly depend on the number of bidders. However, restricting
attention to direct auctions—whether lit or dark—entails no loss of generality. See Appendix 5.3 for
more details.

67Ex-post identity compatibility remains unchanged in dark auctions, as the type profile itself
reveals the number of bidders (Definition 10, 13, and 14).
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4.3.1 Buyer Identity Compatibility

We start with buyer identity compatibility. The results from lit auctions extend to dark
auctions. It is straightforward to verify that the dark first-price auction is Bayesian buyer
identity-compatible, as discussed in Example 1. Take the optimal one for example. We have
the allocation and payment rules as follows:

qd−1st
i (θi, θ−i) = 1θi>max{θ−i,ρ∗},

td−1st
i (θi, θ−i) = 1θi>max{θ−i,ρ∗} × βd (θi) .

Bayesian buyer identity compatibility for dark auctions requires us to check that

EB

[
Eθ−i∈Θ|B|−1

[
1θi>max{θ−i,ρ∗} ×

(
θi − βd (θi)

)]∣∣∣ i ∈ B
]

≥EB

[
Eθ−i∈Θ|B|−1

[
1max

{
θ̂Ni

}
>max{θ−i,ρ∗} ×

(
θi − βd

(
max

{
θ̂Ni

}))]∣∣∣∣ i ∈ B

]
,

which is guaranteed by dark Bayesian incentive compatibility of the dark first-price auction
(with reserve). The equality holds when max

{
θ̂Ni

}
= θi, and the number of identities |Ni|

is irrelevant.
Ex-post buyer identity compatibility still implies strategy-proofness in dark auctions

(Lemma 1). Since strategy-proofness makes the number of bidders irrelevant, the proof of
Theorem 1 remains valid even when the number of bidders is concealed. Thus, the conclusion
still holds in dark auctions that the dark second-price auction with (or without) the reserve
price ρ∗ is the unique optimal (or optimally efficient) dark auction that is ex-post buyer
identity-compatible.

4.3.2 Seller Identity Compatibility

Notice that the optimal reserve price remains unchanged regardless of the number of buyers
and is therefore unaffected by whether the number of bidders is disclosed. Consequently,
Proposition 1 remains true that the dark second-price auction with the reserve price ρ∗ is
Bayesian seller identity-compatible.

Returning to our motivation for introducing dark auctions, we seek optimal auctions
that are ex-post seller identity-compatible, given the impossibility result of Theorem 2
for lit auctions. We now show that the dark first-price auction with the reserve price ρ∗

satisfies this criterion. In fact, we can establish a stronger result: it is ex-post auctioneer
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identity-compatible. It suffices to verify that

EθB∈Θ|B|

[∑
i∈B

1θi>max{θ−i,ρ∗} × βd (θi)
]

≥EθB∈Θ|B|

[
sup

θS∈Θ|S|

∑
i∈B

1θi>max{θ−i,θS ,ρ∗} × βd (θi)
]

,

which holds because both sides simplify to EθB∈Θ|B|

[
1max{θB}>ρ∗ × βd (max {θB})

]
.

Note that it is not unique. For instance, we can construct a fixed payment scheme,
βd (θ, n), for each realized set of buyers B with |B| = n. Let βd (θ, n) decrease with the
number of buyers, n, while maintaining dark Bayesian incentive compatibility by ensuring
that its expected sum equals βd (θ), i.e.,

∑∞
n=1 p (n) βd (θ, n) = βd (θ). The seller is always

worse off by participating in such an auction, making it ex-post auctioneer identity-compatible
while remaining optimal. Although such alternative mechanisms exist, we argue that the dark
first-price auction is the simplest and most commonly observed in practice. Furthermore, if
these alternative auctions were implemented, buyers would find it profitable to manipulate
payments by inflating their identities. This leads to the following characterization of the
dark first-price auction. The proof is relegated to Appendix A.6.

Theorem 4. Assume common priors. The dark first-price auction with the reserve price
ρ∗ is the unique optimal dark auction that is ex-post auctioneer identity-compatible and
Bayesian buyer identity-compatible. The dark first-price auction is the unique optimally
efficient dark auction that is ex-post auctioneer identity-compatible and Bayesian buyer
identity-compatible.

To understand how dark auctions circumvent the conflict between revenue maximization
and the creation of fake competition through identities in lit auctions, as highlighted in
Theorem 2, we must first examine the impact of shill bidding on competition in the auction.
Shill bidding offers participants two key avenues for manipulation: first, by altering the
auction format through the selection of a specific number of bidders (identities), and second,
by optimizing the strategies of the bidders they control within the specific auction. Similarly,
competition in the auction can be analyzed from two perspectives: extensive competition,
which arises from variations in the number of bidders, and intensive competition, which
pertains to a fixed number of bidders. Different auctions exhibit different combinations
of these two forms of competition. In the second-price auction, extensive competition is
subsumed by intensive competition, which can be exploited by the seller. In contrast, the
first-price auction integrates the intensive competition into a fixed bid, making it resistant to
manipulation by other participants. However, the extensive competition remained in the first
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price auction can still be exploited by the seller, as the equilibrium bidding function increases
with the number of bidders. The dark first-price auction addresses this by consolidating the
extensive competition into a fixed bid across different numbers of bidders, thereby muting
the channel of intensifying the perceived competition among buyers by leveraging more
identities (bidders) in the auction and preventing such exploitation.68

As a real-world example, Google transitioned from the second-price auction to the
first-price auction for online advertising auctions in 2019.69 Notably, what Google refers to
as the first-price auction is actually the dark first-price auction, as the number of advertisers
is typically not disclosed. Google is currently facing a lawsuit over alleged shill-bidding-like
practices in these auctions (Footnote 6). Some of the allegations relate specifically to the
second-price auction and no longer apply to the dark first-price auction. This shift has at
least eased concerns among market participants about shill bidding.

Information disclosure policy is a crucial aspect of auction design in practice.70 In
particular, it can facilitate collusion by providing a mechanism for signalling and punishment
(Cramton and Schwartz, 2000; Klemperer, 2002, 2003).71 The prevailing view is that too
much transparency might hurt. For example, OECD guidelines for fighting bid rigging in
public procurement state that “Transparency requirements are indispensable for a sound
procurement procedure to aid in the fight against corruption. They should be complied
with in a balanced manner, in order not to facilitate collusion by disseminating information
beyond legal requirements.. . . Limit as much as possible communications between bidders
during the tender process. Open tenders enable communication and signalling between
bidders” (OECD, 2009).

This paper focuses specifically on the disclosure of the number of bidders. The results
align with the conventional wisdom—but for a clear and straightforward reason: if the
disclosed information can be falsified by fake identities to mislead participants, it is better
to conceal it.

68In a different context, without concerns about shill bidding but maintaining uncertainty about
the number of buyers, McAfee and McMillan (1987b) and Matthews (1987) demonstrate that the
seller can actually benefit from concealing the number of buyers when buyers exhibit constant or
decreasing absolute risk aversion. In particular, they compare the first-price auction, the second-price
auction, and the first-price auction concealing the number of buyers. Assuming constant or decreasing
absolute risk aversion, the expected revenue is highest in the first-price auction concealing the number
of buyers. For experimental evidence, see Dyer, Kagel and Levin (1989) and Aycinena and Rentschler
(2018). In other words, the dark first-price auction proves to be appealing both to buyers and, to
some degree, to the seller.

69An Update on First Price Auctions for Google Ad Manager, May 10, 2019.
70By the Revenue Equivalence Theorem (Myerson, 1981), information disclosure is theoretically

irrelevant as long as the same outcome rule is implemented.
71See Footnote 15.
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5 Discussion

5.1 Identity Compatibility for Both Parties
So far, we have primarily analyzed identity compatibility for buyers and the seller separately.
It should come as no surprise that achieving identity compatibility for both parties simulta-
neously is challenging, as their incentives to engage in shill bidding are misaligned. As a
result, we have the following auction dilemma:

Proposition 4. No optimal dark auction can be both ex-post buyer and ex-post seller
identity-compatible. No optimally efficient dark auction can be both ex-post buyer and ex-post
seller identity-compatible.

Proof. Ex-post buyer identity compatibility implies strategy-proofness (Lemma 1). Optimal-
ity (or optimal efficiency) and strategy-proofness pin down the second-price auction with (or
without) reserve. However, the second-price auction is not ex-post seller identity-compatible.
Therefore, no optimal (or optimally efficient) auction can be both ex-post buyer and ex-post
seller identity-compatible.

This impossibility result also applies to lit auctions, as dark auctions encompass lit
auctions (Proposition 2). The intuition is that ex-post buyer identity compatibility requires
the winning payment to be independent of the winner’s type. Meanwhile, ex-post seller
identity compatibility requires the winning payment to be independent of the loser’s type;
otherwise, the seller could manipulate the payment by pretending to be a loser in the auction.
As a result, the winning payment must be fixed, which contradicts optimality (or optimal
efficiency).

Despite that ex-post identity compatibility for both buyers and the seller is unattainable,
we can still achieve a weaker form of identity compatibility for both parties simultaneously.
Theorem 1 and Proposition 1 show that ex-post buyer identity compatibility, Bayesian seller
identity compatibility, and optimality can be attained simultaneously by the second-price
auction with the reserve price ρ∗. Furthermore, Theorem 4 demonstrates that we can achieve
Bayesian buyer identity compatibility, ex-post seller identity compatibility, and efficiency (or
optimality) simultaneously by running the dark first-price auction (or with reserve). This
underscores a tradeoff between buyers and the seller, where the choice of auction depends
on which party is more informed when shill bidding.
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5.2 Disclosure Policy
This paper demonstrates the role of concealing the number of bidders in the presence of
shill bidding. Notably, disclosure is not necessarily an all-or-nothing decision; instead, the
designer has the option to partially reveal this information. For example, the designer can
run the second-price auction when there are no more than five bidders, and switch to the
dark first-price auction otherwise. This mechanism effectively signals whether the number of
bidders is below or above five. More generally, we define a disclosure policy φ as a surjective
mapping from the number of agents N to a set of signals Y .72 The above example illustrates
a partitional disclosure policy.

Definition 18. A disclosure policy φ is partitional if, for any y, y′ ∈ Y , φ−1(y) ∩ φ−1(y′) 6= ∅
implies y = y′.

Lit and dark mechanisms are both examples of mechanisms under partitional disclosure
policies, where Y lit = N, φlit = idN and Y dark = {d} , φdark ≡ d.

We follow the notation in Section 4.1. Consider a collection of games ΓN = (Γn)n∈N and
a partitional disclosure policy φ. When agents observe a signal y ∈ Y , the set of strategies
for each agent under signal y is denoted by Σy ⊆ ×n∈φ−1(y)Σn, with generic element
σy = (σn)n∈φ−1(y). As noted earlier, Σy does not have to be identical to ×n∈φ−1(y)Σn. Under
each signal y, a type-strategy Sy = (Sn)n∈φ−1(y) for each agent maps from types to strategies,
i.e., Sy : Θ → Σy. We characterize mechanisms under partitional disclosure policies as
follows.

Definition 19.
{

ΓN, (Σy, Sy)y∈Y , φ
}

is partitional Bayesian incentive-compatible if, for all
i ∈ N, all θi ∈ Θ, and all y ∈ Y ,

Sy (θi) ∈ arg max
σy∈Σy

∑
n∈φ−1(y)

pi (n| y)Eθ−i∈Θn−1

[
ui

(
gΓn (σn, Sn (θ−i)) , θi

)]
,

where pi (n| y) = P ( |B| = n| i ∈ B, y) is agent i’s belief that the number of agents is n under
signal y.

We refer to
{

ΓN, (Σy, Sy)y∈Y , φ
}

as a mechanism under the partitional disclosure policy
φ—or, more concisely, a partitional mechanism—if it is partitional Bayesian incentive-
compatible. The term “partitional” emphasizes that the information about the number
of agents participating in the game is revealed according to a partitional disclosure policy.
It is straightforward to verify that this definition reduces to lit Bayesian incentive com-
patibility (Definition 2) under the disclosure policy φlit, and to dark Bayesian incentive

72It is without loss to focus on surjective mappings, because we can ignore unused signals.
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compatibility (Definition 15) under the disclosure policy φdark. Moreover, our earlier obser-
vation (Proposition 2) extends to partitional disclosure policies. The proof is relegated to
Appendix A.7.

Theorem 5. Any partitional mechanism induces an equivalent dark mechanism.

This implies that any outcome rule implementable in a mechanism under a partitional
disclosure policy can be implemented in a dark mechanism. In other words, dark mechanisms
are the most general class of mechanisms under partitional disclosure policies. Therefore,
when we analyze identity compatibility in dark auctions, we implicitly take into account all
auctions under partitional disclosure policies. Theorem 4 can be restated as characterizing
the dark first-price auction (with reserve) as the unique optimal auction under any partitional
disclosure policy that is ex-post auctioneer identity-compatible and Bayesian buyer identity-
compatible.

Under a non-partitional disclosure policies φ̂, there exist two distinct signals, y and
y′ such that φ̂−1(y) ∩ φ̂−1(y′) 6= ∅. Suppose k ∈ φ̂−1(y) ∩ φ̂−1(y′). This implies that
agents must decide which strategies to play in the game Γk under both signals y and y′.
In particular, agents may choose different strategies for the same game Γk depending on
the signal, because the set of games induced by signal y, y′ are different in general, i.e.,
(Γn)n∈φ̂−1(y) 6= (Γn)n∈φ̂−1(y′). The strategy space under signal y, Σy ⊆ ×n∈φ̂−1(y)Σ

n, also
differs from that under signal y′, Σy′ ⊆ ×n∈φ̂−1(y′)Σ

n. Put differently, non-partitional
disclosure policies introduce correlation among agents’ strategies for the same game Γk

that is absent in partitional disclosure policies. This correlation is beyond the scope of our
analysis, but it is an interesting avenue for future research.

5.3 Implementation via Extensive Forms
While the paper focuses on outcome rules (or direct mechanisms), it is important to recognize
that any outcome rule can, in principle, be implemented through dynamic mechanisms via
extensive forms (or indirect mechanisms). In dynamic mechanisms, on-path strategies can
be fully characterized by type profiles; however, off-path strategies may also emerge, which
cannot be captured solely through type profiles. Hence, in any dynamic mechanism, agents
can replicate the behavior of the type they would have reported in the direct mechanism.
Furthermore, dynamic mechanisms enable agents to explore off-path deviations, which may
become profitable when leveraging multiple identities. The presence of off-path deviations in
dynamic auctions strengthens the concept of identity compatibility, as the expanded strategy
space available in dynamic auctions offers participants more opportunities to manipulate
outcomes through the use of multiple identities compared to direct auctions. As a result,
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if a dynamic auction satisfies a specific notion of identity compatibility as defined in this
paper, the corresponding direct auction must also satisfy the same notion.

The converse, however, does not hold in general. As illustrated in Example 2, the
fact that off-path deviations are suboptimal when a buyer uses a single identity does not
imply their suboptimality when a buyer can simultaneously employ multiple identities (see
Footnote 46). Nonetheless, when the objective is to design auctions that disincentive shill
bidding, it is without loss of generality to restrict attention to direct auctions (or outcome
rules). That said, care must be taken when considering alternative implementations of
a given outcome rule, as indirect implementations may introduce deviations that are not
possible under direct implementations. Since all results in this paper are formulated in terms
of outcome rules, they remain valid when considering dynamic mechanisms.73

The literature often adopts the finite type space for technical convenience when analyzing
dynamic auctions through finite extensive forms (Akbarpour and Li, 2020; Komo, Kominers
and Roughgarden, 2024).74 This paper does not explicitly model the extensive-form game
and therefore does not focus on the finite extensive-form game with the finite type space.
Nevertheless, as a robustness check, we extend our analysis to the finite type space. The key
findings are summarized below, with complete proofs provided in Online Appendix B.1.

Our main insights continue to hold in the finite type space. In particular, lit auctions
allow the seller to heighten the perceived competition by inflating the number of bidders,
whereas dark auctions mute the channel. This channel operates independently of the choice
of type space. Consequently, the impossibility result (Theorem 2) for lit auctions remains
valid because of the conflict between revenue maximization and fake competition. From
a technical perspective, we need to handle ties carefully in the finite type space, since
participants can submit identical bids under multiple identities to increase their chances of
winning ties or affect the payments. As is well-documented in the literature, the domain
of the type space can affect characterization results. For instance, strategy-proofness and
(optimal) efficiency do not uniquely pin down the second-price auction (Holmström, 1979;
Harris and Raviv, 1981; Lovejoy, 2006; Elkind, 2007; Jeong and Pycia, 2023). In our setting,
the characterization of the dark first-price auction (Theorem 4) does not extend to the
finite type space.75 Interestingly, the second-price auction can still be characterized in the

73The observation that deviation is generally easier in dynamic (or indirect) mechanisms than in
direct mechanisms is also noted by Levin and Peck (2023), who refer to this phenomenon as the
Misbehavior Principle.

74See Simon and Stinchcombe (1989) for a discussion of modeling challenges involved in the
continuous-time game theory.

75In the finite type space, the dark first-price auction with (or without) reserve remains optimal (or
optimally efficient) and ex-post auctioneer identity-compatible, because the channel through which
the seller heightens the perceived competition is shut down. The characterization fails only because
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finite type space as follows, underscoring the distinction between ex-post buyer identity
compatibility and strategy-proofness.

Theorem 6. The second-price auction maximizes expected revenue among all efficient
auctions that are ex-post buyer identity-compatible.

Finally, the characterization of the posted-price mechanism (Theorem 3) remains valid in
the finite type space, as ties have already been considered in this case. All discussions about
general mechanisms remain valid regardless of the type space—for example, Theorem 5.

5.4 Distinguishable Agents
The main purpose of this paper is to study shill bidding in auctions. The basic framework
assumes that agents are indistinguishable, because we want to model the scenario in which
the designer is unable to distinguish between genuine buyers and shill bidders. However,
it is worth noting that the framework can be naturally extended to environments with
distinguishable agents, where agents are not necessarily ex-ante identical. In such cases, the
collection of games to be designed is no longer inherently anonymous and may depend on
the specific identities of the agents.

This extension introduces a slightly different design consideration: the disclosure of
agents’ identities, as opposed to merely the number of agents. Under this perspective, lit
mechanisms fully disclose the identities of agents, whereas dark mechanisms conceal this
information. In Online Appendix B.2, we formally define this extended framework and
establish that Theorem 5 continues to hold when agents are distinguishable. In particular,
dark mechanisms remain the most general class of mechanisms under partitional disclosure
policies, in the sense that they implement the widest range of outcome rules. This paper
demonstrates how this principle can help the designer to circumvent the inherent conflict
between revenue maximization and fake competition in lit auctions. We leave it for future
explorations that how to apply this principle to other environments.
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A Proofs Omitted from the Main Text

A.1 Proof of Theorem 1
Note that the second-price auction is efficient and becomes optimal when the reserve price
ρ∗ is applied (Myerson, 1981). We first verify that the second-price auction with any reserve
price ρ is ex-post buyer identity-compatible. In particular, we show that no buyer i ∈ B can
benefit from using multiple identities for all B ∈ N , even if buyer i does not commit to the
number of identities in advance. There are three cases:

1. θi > max {θ−i, ρ}: Buyer i wins the auction with the payment max {θ−i, ρ} when
bidding with only one identity, and obtains a positive payoff θi −max {θ−i, ρ} > 0. We
now show that i cannot improve by using multiple identities. Following the notation
in Definition 10, for any θ̂Ni ∈ Θ|Ni|, if max

{
θ̂Ni

}
≥ max {θ−i, ρ}, buyer i can at

best76 win the auction with the same payment as before; if max
{

θ̂Ni

}
< max {θ−i, ρ},

buyer i loses the auction with a zero payoff. Hence, buyer i cannot benefit from using
multiple identities in any case when θi > max {θ−i, ρ}.

2. θi = max {θ−i, ρ}: Conditional on winning, buyer i pays θi when bidding with only one
identity, and obtains a zero payoff. For any θ̂Ni ∈ Θ|Ni|, if max

{
θ̂Ni

}
≥ max {θ−i, ρ},

buyer i can only win the auction with the same payment and obtains a zero payoff; if
max

{
θ̂Ni

}
< max {θ−i, ρ}, buyer i loses the auction with a zero payoff. Hence, buyer

i cannot benefit from using multiple identities in any case when θi = max {θ−i, ρ}.

3. θi < max {θ−i, ρ}: Buyer i loses the auction when bidding with only one identity, and
obtains a zero payoff. For any θ̂Ni ∈ Θ|Ni|, if max

{
θ̂Ni

}
≥ max {θ−i, ρ}, buyer i can

76When max
{

θ̂Ni

}
= max {θ−i}, buyer i will not win the auction with probability one.
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only win the auction with the payment max {θ−i, ρ} and obtains a negative payoff
θi − max {θ−i, ρ} < 0; if max

{
θ̂Ni

}
< max {θ−i, ρ}, buyer i loses the auction with a

zero payoff. Hence, buyer i cannot benefit from using multiple identities in any case
when θi < max {θ−i, ρ}.

Combining the above three cases establishes ex-post buyer identity compatibility for the
second-price auction with any reserve price.

To show uniqueness, notice that ex-post buyer identity compatibility implies strategy-
proofness (Lemma 1). It is enough to show that the second-price auction is the unique
optimally efficient auction that is strategy-proof, and it becomes the unique optimal auction
that is strategy-proof when the reserve price ρ∗ is applied.

The allocation rules are pinned down by optimality and efficiency respectively, i.e., for
all B ∈ N and all θB ∈ Θ|B|,77

qopt
i (θB) = 1θi>max{θ−i,ρ∗}

qeff
i (θB) = 1θi>max{θ−i}.

Let ui (θi, θ−i) be buyer i’s equilibrium payoff when the type profile is θB = (θi, θ−i).
Strategy-proofness implies that

ui (θi, θ−i) = max
θ′

i∈Θ
qi
(
θ′

i, θ−i
)

θi − ti
(
θ′

i, θ−i
)

= qi (θi, θ−i) θi − ti (θi, θ−i) .

By the envelope theorem, we have

ui (θi, θ−i) − ui (0, θ−i) =
∫ θi

0
qi (s, θ−i) ds.

Then,

ti(θi, θ−i) = qi (θi, θ−i) θi −
∫ θi

0
qi (s, θ−i) ds − ui (0, θ−i) .

Ex-post individual rationality implies that ui (0, θ−i) ≥ 0. To maximize revenue, we have
ui (0, θ−i) = 0. Plugging the optimal and efficient allocation rules into the above equation
respectively, we have

topt
i (θB) = 1θi>max{θ−i,ρ∗} × max {θ−i, ρ∗}

topt-eff
i (θB) = 1θi>max{θ−i} × max {θ−i} ,

77We can ignore ties in the continuous type space.
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which are the second-price auction with and without the reserve price ρ∗ respectively. Hence,
we have shown uniqueness under strategy-proofness.

A.2 Proof of Theorem 2
We prove by showing that, for any optimal (or optimally efficient) lit auction, and any set of
buyers B, the seller can always strictly benefit from using a single identity. The following
argument focuses on optimal auctions, but the same logic applies to optimally efficient
auctions by letting the reserve price ρ∗ be zero.

Consider a set of bidders N = B ∪ {0}, where bidder 0 is the identity controlled by the
seller and every one else is a distinct buyer. Let θ−i = θB\{i} and θ−i = max

{
θB\{i}

}
. For

any buyer i ∈ B, we have for all θB ∈ Θ|B|, and all θ0 ∈ Θ,78

topt
i (θB, θ0) ≤ sup

θ′
0∈Θ

topt
i

(
θB, θ′

0
)

.

In particular, conditional on buyer i of type θi ≥ ρ∗ winning the auction,79 we have

Eθ−i,θ0

[
topt
i (θi, θ−i, θ0)

∣∣∣max
{

θ−i, θ0
}

< θi

]
(1)

≤Eθ−i,θ0

[
sup
θ′

0∈Θ
topt
i

(
θi, θ−i, θ′

0
)∣∣∣∣∣max

{
θ−i, θ0

}
< θi

]

=Eθ−i

[
sup
θ′

0∈Θ
topt
i

(
θi, θ−i, θ′

0
)∣∣∣∣∣ θ−i < θi

]
.

Notice that (1) is the expected payment for buyer i of type θi conditional on winning. The
payoff equivalence lemma (Myerson, 1981) shows that the expected payment for buyer i

of type θi (without conditional on winning) is pinned down by optimality given (interim)
individual rationality.80 Under ex-post individual rationality, (1) is also pinned down by
optimality, because the losing payment is always zero. The equality is obtained when the
payment topt

i (θi, θ−i, θ0) does not vary with θ0 conditional on θi > max
{

θ−i, θ0
}

. Notice
that the payment rule treats bidders symmetrically under anonymity. Then, topt

i (θi, θ−i, θ0)
also does not vary with θ−i conditional on θi > max

{
θ−i, θ0

}
. Therefore, the payment for

buyer i of type θi is fixed conditional on winning, which is exactly the first-price auction
78θ0 captures buyers’ view that bidder 0 is a genuine buyer, and θ′

0 is the type that the seller
pretends to be under this view.

79We can ignore ties in the continuous type space. In Online Appendix B.4, we deal with ties
explicitly in the finite type space.

80The term “interim” implies that buyers know their own types, but only have expectations over
others’ types.
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(with reserve). Consequently, we have

Eθ−i

[
sup
θ′

0∈Θ
topt
i

(
θi, θ−i, θ′

0
)∣∣∣∣∣ θ−i < θi

]
≥ βn (θi) = θi −

∫ θi
ρ∗ F n−1 (x) dx

F n−1 (θi)
,

where βn (·) is the equilibrium bidding function in the first-price auction with the reserve
price ρ∗ when the number of bidders is n = |N |.81 Without loss, we assume n ≥ 2, i.e., there
is at least one buyer and one bidder controlled by the seller in the auction.82

The first-price auction (with reserve) proves to be the most resilient against the seller’s
manipulation through the use of fake identities. Moreover, it provides a lower bound for the
expected revenue the seller can obtain by shill bidding. Notice that we can focus on the
payment from the buyer of the highest type under optimality, because only the highest type
can win and only winners pay. Then,

EθB

[
sup
θ′

0∈Θ

∑
i∈B

topt
i

(
θB, θ′

0
)]

=Eθ̃B

[
sup
θ′

0∈Θ
topt
i

(
θi = θ̃1:n−1, θ−i =

(
θ̃2:n−1, . . . , θ̃n−1:n−1

)
, θ′

0

)]
,

where θ̃k:n−1 is the kth order statistic among θ̃B.83 Put differently, θ̃k:n−1 is the kth highest
of n − 1 independent draws from the type space Θ with the distribution F (·). The equality
holds because the payment rule treats bidders symmetrically under anonymity. Since we
only care about the buyer of the highest type, we can rewrite the above equation in the
following way:

Eθ̃B

[
sup
θ′

0∈Θ
topt
i

(
θi = θ̃1:n−1, θ−i =

(
θ̃2:n−1, . . . , θ̃n−1:n−1

)
, θ′

0

)]

=Eθ̃B

[
Eθ̃B

[
sup
θ′

0∈Θ
topt
i

(
θ̃1:n−1, θ̃2:n−1, . . . , θ̃n−1:n−1, θ′

0

)∣∣∣∣∣ θ̃1:n−1
]]

=Eθ̃B

[
Eθ̃B ,θ−i

[
sup
θ′

0∈Θ
topt
i

(
θ̃1:n−1, θ−i, θ′

0

)∣∣∣∣∣ θ̃1:n−1 ≥ θ−i

]]

=Eθ̃B

[
Eθ−i

[
sup
θ′

0∈Θ
topt
i

(
θ̃1:n−1, θ−i, θ′

0

)∣∣∣∣∣ θ̃1:n−1 ≥ θ−i

]]

≥Eθ̃B

[
βn
(
θ̃1:n−1

)]
.

81We assume βn (θ) = 0 when θ < ρ∗ for convenience.
82By definition, n > 0 because 0 ∈ N . When N = {0}, there are no buyers and, consequently, no

sale in any case.
83Note that |B| = |N | − 1 = n − 1.
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The first equality follows from the law of iterated expectations. The second equality follows
from anonymity and the fact that the conditional joint distribution of θ̃2:n−1, . . . , θ̃n−1:n−1

given θ̃1:n−1, is the same as the joint distribution of the order statistics obtained from n − 2
independent draws from the type space Θ with the distribution truncated on the left at
θ̃1:n−1. To see this, we first observe that the joint density function of the order statistics is

forder
(
θ̃1:n−1, θ̃2:n−1, . . . , θ̃n−1:n−1

)
= (n − 1)!

n−1∏
i=1

f
(
θ̃i:n−1

)
.

The density function of the first order statistic is

forder
(
θ̃1:n−1

)
=
(
F n−1

(
θ̃1:n−1

))′
= (n − 1) F n−2

(
θ̃1:n−1

)
f
(
θ̃1:n−1

)
.

Then, we have

forder
(

θ̃2:n−1, . . . , θ̃n−1:n−1
∣∣∣ θ̃1:n−1

)
=

forder
(
θ̃1:n−1, θ̃2:n−1, . . . , θ̃n−1:n−1

)
forder

(
θ̃1:n−1

)
= (n − 2)!

n−1∏
i=2

f
(
θ̃i:n−1

)
F
(
θ̃1:n−1

) ,

which is exactly the joint density function of the order statistics obtained from n − 2
independent draws from the type space Θ with the distribution truncated on the left at
θ̃1:n−1. Therefore, we can replace the random variables θ̃2:n−1, . . . , θ̃n−1:n−1 conditional on
θ̃1:n−1 with the independent random variables θ−i conditional on θ−i ≤ θ̃1:n−1.

As a recap, we have characterized the lower bound of the expected revenue for the seller
by employing a fake identity in the optimal lit auction for any set of buyers B, i.e.,

EθB

[
sup
θ0∈Θ

∑
i∈B

topt
i (θB, θ0)

]
≥ EθB

[
βn
(
θ1:n−1

)]
.

By the Revenue Equivalence Theorem (Myerson, 1981), the expected revenue from
any optimal auction with a set of buyers B is the same as the expected revenue from the
first-price auction with the reserve price ρ∗ with the same set of buyers. Therefore, we have

EθB

[∑
i∈B

topt
i (θB)

]
= EθB

[
βn−1

(
θ1:n−1

)]
,
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where βn−1 (·) is the equilibrium bidding function in the first-price auction with the reserve
price ρ∗ when the number of bidders is n − 1 = |B| = |N | − 1.

Notice that for all θ > ρ∗,

βn−1 (θ) = θ −
∫ θ

ρ∗ F n−2 (x) dx

F n−2 (θ) < θ −
∫ θ

ρ∗ F n−1 (x) dx

F n−1 (θ) = βn (θ) .

Intuitively, buyers bid higher when there are more bidders in the first-price auction, because
the auction is perceived as more competitive with more bidders in the auction.

Hence, we have

EθB

[∑
i∈B

topt
i (θB)

]
< EθB

[
sup
θ0∈Θ

∑
i∈B

topt
i (θB, θ0)

]
.

Because B is any arbitrary set of buyers, we have

EB

[
EθB

[∑
i∈B

topt
i (θB)

]]
< EB

[
EθB

[
sup
θ0∈Θ

∑
i∈B

topt
i (θB, θ0)

]]
,

which violates ex-post seller identity compatibility.

A.3 Proof of Theorem 3
Consider the case |B| = 1. Incentive compatibility implies that for all θi, θ′

i ∈ Θ,

qi (θi) θi − ti (θi) ≥ qi
(
θ′

i

)
θi − ti

(
θ′

i

)
qi (θi) θ′

i − ti (θi) ≤ qi
(
θ′

i

)
θ′

i − ti
(
θ′

i

)
.

(2)

Take the difference of the above two inequalities, we have

(
qi (θi) − qi

(
θ′

i

))
×
(
θi − θ′

i

)
≥ 0.

Therefore, the allocation rule qi (θi) is increasing in θi. Consequently, the payment rule
ti (θi) is also increasing in θi, i.e., (ti (θi) − ti (θ′

i)) × (θi − θ′
i) ≥ 0.

When the lit auction (q, t) is ex-post auctioneer identity-compatible, we have for all
θi ∈ Θ, and all n ∈ N,

ti (θi) ≥ sup
θ−i∈Θn−1

qi(θi,θ−i)>0

ti (θi, θ−i)
qi (θi, θ−i)

. (3)

When the number of buyers is n, the expected payment from buyer i of type θi is given as
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follows

Eθ−i
[ti (θi, θ−i)] = Eθ−i

[
ti (θi, θ−i) 1qi(θi,θ−i)>0 + ti (θi, θ−i) 1qi(θi,θ−i)=0

]
.

Ex-post individual rationality implies that

Eθ−i

[
ti (θi, θ−i) 1qi(θi,θ−i)=0

]
≤ 0.

From the inequality (3), we know that

Eθ−i

[
ti (θi, θ−i) 1qi(θi,θ−i)>0

]
≤ Eθ−i

[
qi (θi, θ−i) ti (θi) 1qi(θi,θ−i)>0

]
.

Let πn denote the expected revenue for the seller when the number of buyers is n.

πn =
n∑

i=1
Eθi,θ−i

[ti (θi, θ−i)]

=
n∑

i=1
Eθi

[
Eθ−i

[ti (θi, θ−i)]
]

≤
n∑

i=1
Eθi

[
Eθ−i

[
qi (θi, θ−i) ti (θi) 1qi(θi,θ−i)>0

]]
=

n∑
i=1

Eθi,θ−i

[
qi (θi, θ−i) ti (θi) 1qi(θi,θ−i)>0

]
=Eθi,θ−i

[
n∑

i=1
qi (θi, θ−i) ti (θi) 1qi(θi,θ−i)>0

]

Recall that ti (θi) is increasing in θi and
∑n

i=1 qi (θi, θ−i) ≤ 1. Then we have

n∑
i=1

qi (θi, θ−i) ti (θi) ≤ ti (max {θi, θ−i})

and
πn ≤ Eθi,θ−i

[ti (max {θi, θ−i})] . (4)

By taking n = 1 for the inequality (3), we have that conditional on qi (θi) > 0,

ti (θi) ≥ ti (θi)
qi (θi)

.
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Then when ti (θi) > 0, we have qi (θi) = 1. Let84

θl = inf {θi ∈ Θ| ti (θi) > 0} .

Then ti (θi) > 0 and qi (θi) = 1 for all θi > θl because of monotonicity. Plugging qi (θi) =
qi (θ′

i) = 1 into the inequality (2), we have ti (θi) = ti (θ′
i) for all θi, θ′

i > θl. Ex-post
individual rationality implies that ti (θi) ≤ θ′

i for all θi, θ′
i > θl. Then, ti (θi) ≤ θl for all

θi > θl. Hence, given θl, the seller maximizes expected revenue by running the posted-price
mechanism with the price θl, because the inequality (4) is obtained with equality in this
case. The only remaining problem for the seller is to determine the optimal posted price θl,
which always exists because the choice set Θ 3 θl is compact.85 In total, we show that the
posted-price mechanism with a suitable price generates the highest expected revenue among
all lit auctions that are ex-post auctioneer identity-compatible.

A.4 Proof of Lemma 2
Given the dark auction

(
ΓN, Σd, Sd

)
, we define the direct dark auction by, for all n ∈ N,

and all N ∈ N with |N | = n,

(
qd (θN ) , td (θN )

)
= x(Γn,Sn) (θN ) = gΓn (Sn (θN )) ∀θN ∈ Θn.

Thus, this direct dark auction yields the same mapping from type profiles to allocations
and payments as the given one. It remains to show that truth-telling is dark Bayesian
incentive-compatible.

For the dark auction
(
ΓN, Σd, Sd

)
, dark Bayesian incentive compatibility (Definition 15)

implies that, for all i ∈ N, all θi ∈ Θ, and all σd = (σn)n∈N ∈ Σd,

∑
n∈N

pi (n)Eθ−i∈Θn−1

[
ui

(
gΓn (Sn (θi) , Sn (θ−i)) , θi

)]
≥
∑
n∈N

pi (n)Eθ−i∈Θn−1

[
ui

(
gΓn (σn, Sn (θ−i)) , θi

)]
,

where pi (n) is agent i’s belief that the number of agents is n. In particular, Sd(θ′
i) ∈ Σd for

84When ti (θi) ≤ 0 for all θi ∈ Θ, we know from the inequality (4) that πn ≤ 0 for all n ∈ N. Then
the auction never generates positive revenue. We can safely ignore those auctions.

85The exact optimal posted price depends on both the type distribution and the distribution of
the set of buyers. The type space Θ is compact for both continuous and finite type spaces.
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all θ′
i ∈ Θ. Then, we have

∑
n∈N

pi (n)Eθ−i∈Θn−1

[
ui

(
gΓn (Sn (θi) , Sn (θ−i)) , θi

)]
≥
∑
n∈N

pi (n)Eθ−i∈Θn−1

[
ui

(
gΓn (

Sn (θ′
i

)
, Sn (θ−i)

)
, θi

)]
,

for all i ∈ N, and all θi, θ′
i ∈ Θ. These inequalities translate into

∑
n∈N

pi (n)Eθ−i∈Θn−1

[
θiq

d
i (θi, θ−i) − td

i (θi, θ−i)
]

≥
∑
n∈N

pi (n)Eθ−i∈Θn−1

[
θiq

d
i

(
θ′

i, θ−i
)

− td
i

(
θ′

i, θ−i
)]

,

for all i ∈ N, and all θi, θ′
i ∈ Θi. Hence, truth-telling is dark Bayesian incentive-compatible.

A.5 Proof of Proposition 3
We first sum the expected revenue over all sets of buyers B ∈ N , and then transform it into
a summation over all potential buyers i ∈ N. Changing the order of summation is valid,
because the sum is always finite. Recall that pi (n) = P ( |B| = n| i ∈ B).

πd =
∑

B∈N
P (B = B)

∑
i∈B

EθB∈Θ|B|

[
td
i (θB)

]
=
∑

B∈N

∑
i∈B

P (B = B)Eθi∈Θ
[
T

|B|
i (θi)

]
=
∑
i∈N

∑
B∈N

s.t. i∈B

P (B = B)Eθi∈Θ
[
T

|B|
i (θi)

]

=
∑
i∈N

∑
B∈N

P (B = B, i ∈ B)Eθi∈Θ
[
T

|B|
i (θi)

]
=
∑
i∈N

∞∑
n=1

P (|B| = n, i ∈ B)Eθi∈Θ [T n
i (θi)]

=
∑
i∈N

∞∑
n=1

pi (n)P (i ∈ B)Eθi∈Θ [T n
i (θi)]

=
∑
i∈N

P (i ∈ B)Eθi∈Θ

[ ∞∑
n=1

pi (n) T n
i (θi)

]

=
∑
i∈N

P (i ∈ B)Eθi∈Θ
[
T d

i (θi)
]
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The expression is intuitive: we still sum the expected payments from all potential buyers
i ∈ N, but now weighted by the probability that they belong to the realized set of buyers.
By Lemma 3,

πd =
∑
i∈N

P (i ∈ B)Eθi∈Θ
[
T d

i (θi)
]

=
∑
i∈N

P (i ∈ B)
(
T d

i (0) + Eθi∈Θ
[
Qd

i (θi) v (θi)
])

=
∑
i∈N

P (i ∈ B) T d
i (0) +

∑
i∈N

P (i ∈ B)Eθi∈Θ
[
Qd

i (θi) v (θi)
]

,

where,

∑
i∈N

P (i ∈ B)Eθi∈Θ
[
Qd

i (θi) v (θi)
]

=
∑
i∈N

P (i ∈ B)Eθi∈Θ

[ ∞∑
n=1

pi (n)Eθ−i∈Θn−1

[
qd

i (θi, θ−i)
]

v (θi)
]

=
∑
i∈N

Eθi∈Θ

[ ∞∑
n=1

P (|B| = n, i ∈ B)Eθ−i∈Θn−1

[
qd

i (θi, θ−i)
]

v (θi)
]

=
∑
i∈N

∞∑
n=1

P (|B| = n, i ∈ B)EθB∈Θn

[
qd

i (θB) v (θi)
]

=
∑
i∈N

∑
B∈N

P (B = B, i ∈ B)EθB∈Θ|B|

[
qd

i (θB) v (θi)
]

=
∑
i∈N

∑
B∈N

s.t. i∈B

P (B = B)EθB∈Θ|B|

[
qd

i (θB) v (θi)
]

=
∑

B∈N
P (B = B)

∑
i∈B

EθB∈Θ|B|

[
qd

i (θB) v (θi)
]

=
∑

B∈N
P (B = B)EθB∈Θ|B|

[∑
i∈B

qd
i (θB) v (θi)

]
.

Hence,

πd =
∑
i∈N

P (i ∈ B) T d
i (0) +

∑
B∈N

P (B = B)EθB∈Θ|B|

[∑
i∈B

qd
i (θB) v (θi)

]
.

54



A.6 Proof of Theorem 4
Given the previous discussion, we know that the dark first-price auction with the reserve price
ρ∗ is both ex-post auctioneer identity-compatible and Bayesian buyer identity-compatible.
Now we show the uniqueness. Consider an optimal dark auction

(
qd, td

)
. By Lemma 3,

optimality implies that qd
i (θB) = 1θi>max{θ−i,ρ∗} for all B ∈ N and all θB ∈ Θ|B|.86 Ex-post

auctioneer identity compatibility implies that for all B ∈ N , conditional on buyer i ∈ B

being the winner, the seller cannot push up the payment via identities. In other words, for
all B ∈ N , θi ∈ Θ and all |S| ∈ N,

Eθ−i∈Θ|B|−1

[
td
i (θi, θ−i)

∣∣∣max {θ−i, ρ∗} < θi

]
≥Eθ−i∈Θ|B|−1

[
sup

θS<θi

td
i (θi, θ−i, θS)

∣∣∣∣∣max {θ−i, ρ∗} < θi

]
,

where θS ∈ Θ|S| and θS = max {θS}. Ex-post individual rationality implies that ti (θB) = 0
when θi < max {θ−i, ρ∗}. Then, we have

Eθ−i∈Θ|B|−1

[
td
i (θi, θ−i)

]
≥ Eθ−i∈Θ|B|−1

[
sup

θS<θi

td
i (θi, θ−i, θS)

]
. (5)

Now, suppose that instead of the seller, buyer i employs the set of identities S with a
type profile θS such that θS < θi. Bayesian buyer identity compatibility implies that

EB

[
Eθ−i∈Θ|B|−1

[
1θi>max{θ−i,ρ∗} ×

(
θi − td

i (θi, θ−i)
)]∣∣∣ i ∈ B

]
≥EB

[
Eθ−i∈Θ|B|−1

[
1θi>max{θ−i,ρ∗} ×

(
θi − td

i (θi, θ−i, θS)
)]∣∣∣ i ∈ B

]
.

Then, for all θS ∈ Θ|S| such that θS < θi, we have

EB

[
Eθ−i∈Θ|B|−1

[
td
i (θi, θ−i)

]∣∣∣ i ∈ B
]

≤ EB

[
Eθ−i∈Θ|B|−1

[
td
i (θi, θ−i, θS)

]∣∣∣ i ∈ B
]

. (6)

Combining (5) and (6), we have, for all θi ∈ Θ, all |S| ∈ N, and all θS ∈ Θ|S| such that
θS < θi,

Eθ−i∈Θ|B|−1

[
td
i (θi, θ−i)

]
= Eθ−i∈Θ|B|−1

 sup
θ

′
S<θi

td
i

(
θi, θ−i, θ′

S

)
Eθ−i∈Θ|B|−1

[
td
i (θi, θ−i)

]
= Eθ−i∈Θ|B|−1

[
td
i (θi, θ−i, θS)

]
.

86We can ignore ties, because the probability of a tie is zero in the continuous type space.
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Hence, the payment td
i (θi, θ−i, θS) is independent of θS conditional on θS < θi. Notice that

the payment rule is anonymous, i.e., it treats each bidder symmetrically. It follows that the
payment td

i (θi, θ−i, θS) is independent of θ−i conditional on θ−i < θi. Hence, conditional
on i being the winner, the winning payment is fixed, i.e., conditional on θi > ρ∗, for all
θ−i ∈ Θ|B|−1 such that θ−i < θi, all |S| ∈ N, and all θS ∈ Θ|S| such that θS < θi,

td
i (θi, θ−i, θS) = Eθ−i∈Θ|B|−1

[
td
i (θi, θ−i)

∣∣∣max {θ−i, ρ∗} < θi

]
.

When |B| = 1, the above equality implies that conditional on max {θS , ρ∗} < θi, we have

td
i (θi, θS) = td

i (θi) ∀ |S| ∈ N.

In other words, the winning payment is independent of how many bidders in the auction
and what losing bidders’ types are.87 Optimality implies that td

i (θi) = βd (θi) when θi > ρ∗,
leading to

td
i (θB) = 1θi>max{θ−i,ρ∗} × βd (θi) ∀B ∈ N , ∀θB ∈ Θ|B|,

which corresponds to the dark first-price auction with the reserve price ρ∗.
It is straightforward to verify that the dark first-price auction (without reserve) is opti-

mally efficient (Proposition 3). Moreover, it is both ex-post auctioneer identity-compatible
and Bayesian buyer identity-compatible. Its uniqueness follows directly from the above
argument by letting the reserve price be zero.

A.7 Proof of Theorem 5
Consider any partitional mechanism

{
ΓN, (Σy, Sy)y∈Y , φ

}
. Partitional Bayesian incentive

compatibility (Definition 19) implies that for all i ∈ N, all θi ∈ Θ, all y ∈ Y , and all
σy = (σn)n∈φ−1(y) ∈ Σy,

∑
n∈φ−1(y)

pi (n| y)Eθ−i∈Θn−1

[
ui

(
gΓn (Sn (θi) , Sn (θ−i)) , θi

)]
≥

∑
n∈φ−1(y)

pi (n| y)Eθ−i∈Θn−1

[
ui

(
gΓn (σn, Sn (θ−i)) , θi

)]
, (7)

87Here we use the assumption that P (|B| = 1) > 0. Otherwise, we cannot pin down the auction
format when participants are sure that there is no shill bidding. For example, if P (|B| = 1) = 0 and
P (|B| = 2) > 0, then buyers are sure that there is no shill bidding when there are two bidders in the
auction. Therefore, we do not need to run a first-price auction when there are two bidders in the
auction. Still, when there are more than two bidders in the auction, the above equality pins down a
fixed payment which only varies with the winner’s own type. In other words, we do require a dark
first-price auction when the number of bidders is more than two.
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where pi (n| y) is agent i’s belief that the number of agents is n under signal y.
Let pi (y) denote the probability of agent i observing signal y. Then,

pi (y) =
∑

n∈φ−1(y)
P ( |B| = n| i ∈ B) =

∑
n∈φ−1(y)

pi(n).

Hence, pi (n| y) = pi(n)
pi(y) for y = φ (n) and 0 otherwise. By summing (7) over all signals

weighted by the probability of agent i observing each signal, we have

∑
y∈Y

pi (y)
∑

n∈φ−1(y)
pi (n| y)Eθ−i∈Θn−1

[
ui

(
gΓn (Sn (θi) , Sn (θ−i)) , θi

)]
=
∑
y∈Y

 ∑
n∈φ−1(y)

pi (n)Eθ−i∈Θn−1

[
ui

(
gΓn (Sn (θi) , Sn (θ−i)) , θi

)]
=
∑
n∈N

pi (n)Eθ−i∈Θn−1

[
ui

(
gΓn (Sn (θi) , Sn (θ−i)) , θi

)]

≥
∑
y∈Y

pi (y)
∑

n∈φ−1(y)
pi (n| y)Eθ−i∈Θn−1

[
ui

(
gΓn (σn, Sn (θ−i)) , θi

)]
=
∑
y∈Y

 ∑
n∈φ−1(y)

pi (n)Eθ−i∈Θn−1

[
ui

(
gΓn (σn, Sn (θ−i)) , θi

)]
=
∑
n∈N

pi (n)Eθ−i∈Θn−1

[
ui

(
gΓn (σn, Sn (θ−i)) , θi

)]
,

where the second and last equalities follow from the fact that φ is partitional.
Let

Σd = ×y∈Y Σy

Sd = (Sy)y∈Y =
(
(Sn)n∈φ−1(y)

)
y∈Y

.

Then, the above inequality holds for all i ∈ N, all θi ∈ Θ, and all σd =
(
(σn)n∈φ−1(y)

)
y∈Y

=

(σy)y∈Y ∈ ×y∈Y Σy = Σd. Hence,
(
ΓN, Σd, Sd

)
is dark Bayesian incentive-compatible.

By construction, the two mechanisms induce the same outcome rule, and thus they are
equivalent.
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B Online Appendix

B.1 Finite Type Space
We assume a finite type space Θ =

{
θ1, θ2, . . . , θK

}
, where fk = P

(
θi = θk

)
for k ∈

{1, 2, . . . , K}. Assume θ1 = 0, θk+1 > θk, and K > 1.
Myerson (1981) characterizes the optimal auction’s allocation rule in terms of the virtual

valuation in the continuous type space. Similar ideas apply in the finite type space. We can
define the virtual valuation of type θk as88

v
(
θk
)

= θk −
(
θk+1 − θk

) 1 −
∑k

m=1 fm

fk
.

Lovejoy (2006) and Elkind (2007) characterize the optimal auction in the finite type
space, where the optimal reserve price is

ρ∗ = min
{

θk ∈ Θ
∣∣∣ v (θk

)
≥ 0

}
= θk∗

.

We observe that when θK = ρ∗, the second-price auction with the reserve price ρ∗

degenerates to the posted-price mechanism with the price ρ∗. To differentiate between these
two mechanisms, we assume that θK > ρ∗.

All notions of identity compatibility are defined in the same way as in the continuous
type space. The main difference is that the probability of a tie is positive in the finite type
space, which means that ties cannot be ignored as before. To avoid repetition, we focus
directly on how our results extend to the finite type space, organizing the discussion by the
auction format to which each result applies.

Second-Price Auction

Our first main result (Theorem 1) characterizes the second-price auction under ex-post buyer
identity compatibility, closely mirroring the characterization under strategy-proofness. We
now demonstrate that a similar characterization can be achieved in the finite type space—a
feature unique to ex-post buyer identity compatibility.

In the continuous type space, strategy-proofness and optimal efficiency (or optimality)
pin down the second-price auction (or with the reserve price ρ∗) (Green and Laffont, 1977;
Holmström, 1979; Myerson, 1981). However, this result does not directly extend to the finite
type space (Harris and Raviv, 1981; Lovejoy, 2006; Jeong and Pycia, 2023), due to the role
of ties.

88We define θK+1 = θK .
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In the finite type space, the standard second-price auction with the reserve price ρ∗—in
which the winner pays exactly the second-highest bid—is not optimal. Instead, strategy-
proofness and optimality pin down the tie-corrected second-price auction with the reserve
price ρ∗ (Appendix B.6).89

Definition 20. The tie-corrected second-price auction is the direct mechanism of the second-
price auction with a fixed priority order drawn uniformly at random for breaking ties.

In the tie-corrected second-price auction, instead of paying exactly the second-highest
bid, the unique winner pays an amount strictly between the second-highest bid (the tying
bid) and the lowest unique winning bid (one tick above the tying bid). Hence, the auction
is referred to as “tie-corrected.” Although this auction (with reserve) is optimal, it is not
ex-post buyer identity-compatible. This is because, under the tie-corrected payment rule,
buyers strictly prefer winning the tie over being the unique winner. The risk of losing
the tie can be virtually eliminated by employing a large number of identities. Similarly,
when ties are broken according to a fixed priority order drawn uniformly at random, the
second-price auction (with reserve) is optimal but fails to be even Bayesian buyer identity-
compatible, because the probability of drawing a high priority can also be increased by
using multiple identities.90 To summarize, we cannot achieve optimality and ex-post buyer
identity compatibility at the same time in the finite type space.91

Now, let’s turn to efficiency. As above, efficiency and strategy-proofness alone cannot
pin down the second-price auction in the finite type space, even if we assume buyers of
the lowest type obtain zero payoffs. The winner can be charged either above or below the
second-highest bid while still preserving strategy-proofness. As demonstrated earlier, this
flexibility in the payment rule enables buyers to exploit by using multiple identities. We show
that ex-post buyer identity compatibility eliminates this upward flexibility in the payment
rule under strategy-proofness, leading to the following result.

Theorem. The second-price auction maximizes expected revenue among all efficient auctions
that are ex-post buyer identity-compatible.

The proof is relegated to Appendix B.3. It is important to note that the second-price
89Anonymity is assumed in this paper. In the continuous type space, the probability of a tie is

zero. This auction degenerates to the standard second-price auction.
90The second-price auction with a fixed priority order for breaking ties is considered in Akbarpour

and Li (2020). In the finite type space, buyers are not indifferent to how ties are broken in the
second-price auction. Given a fixed priority order, buyers with higher priorities pay less. Anonymity
requires the priority order to be drawn uniformly at random in advance. Hence, buyers can strictly
benefit from using multiple identities in order to increase the chance of drawing a high priority. See
Appendix B.5 for details.

91Consequently, Proposition 4 holds in the finite type space.
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auction does not maximize expected revenue among all efficient auctions.92 The tie-corrected
one does, but it fails to be ex-post buyer identity-compatible. This result holds in the
continuous type space as well.93 As previously discussed, the characterization of the second-
price auction under strategy-proofness in the continuous type space cannot be directly
extended to the finite type space. Therefore, Theorem 6 stands as a novel characterization
of the second-price auction that applies to both finite and continuous type spaces.

Similarly, when extending Proposition 1 to the finite type space, we should be careful
with the tie-breaking rule to ensure optimality and Bayesian seller identity compatibility at
the same time.

Proposition 5. The second-price auction with the reserve price ρ∗, which breaks ties
according to a fixed priority order drawn uniformly at random, is Bayesian seller identity-
compatible.

Proof. In this auction, the best scenario for the seller is when they are drawn the lowest
priorities while participating under multiple identities. It ensures that the seller does not
risk winning the auction when tying with buyers. This scenario mirrors the one analyzed
in Akbarpour and Li (2020), where the auctioneer considers whether to exaggerate other
buyers’ bids. They show that the auctioneer has no incentive to do so in the English auction
with the reserve price ρ∗, which breaks ties according to a fixed priority order. Consequently,
the seller also has no incentive to bid above the reserve price ρ∗ in the second auction when
assigned the lowest priority.94 Therefore, regardless of the priority order, bidding above the
reserve price ρ∗ remains unprofitable for the seller. The number of losing bidders also does
not affect the winning payment under a fixed priority order. As a result, this auction is
Bayesian seller identity-compatible.

First-Price Auction

In the finite type space, the dark first-price auction is ex-post auctioneer identity-compatible.
However, it is no longer Bayesian buyer identity-compatible, because buyers can benefit
from using multiple identities to increase their chances of winning ties. Although we cannot
extend Theorem 4 to the finite type space, our main insight holds, i.e., dark auctions mute

92In the continuous type space, the second-price auction with the reserve price ρ∗ is the unique
optimal auction that is ex-post buyer identity-compatible. However, in the finite type space, this
auction does not maximize expected revenue among all auctions that are ex-post buyer identity-
compatible. See Appendix B.6 for details.

93It is implied by Theorem 1.
94The second-price auction gives the seller even less information than the English auction.
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the channel through which the seller heightens the perceived competition by inflating the
number of bidders.

For lit auctions, the impossibility result (Theorem 2) remains valid in the finite type space
because the conflict between revenue maximization and fake competition exists irrespective
of the type space. The proof is relegated to Appendix B.4. In the continuous type space, we
identify the first-price auction as the most challenging for the seller to manipulate. In the
finite type space, we must handle ties carefully. Specifically, we identify the tie-corrected
first-price auction as the most challenging for the seller to manipulate safely. Safety means
that the seller never runs the risk of winning the auction when shill bidding.95 The tie
correction maximizes the seller’s loss for ensuring safety. Still, we show that the seller strictly
benefits from using a single identity in any optimal lit auction when doing so.

Definition 21. The tie-corrected first-price auction works as follows. Bidders simultaneously
report their types, and the highest reported type wins. In case of a tie, the winner pays
exactly the reported type.96 Ties are broken uniformly at random. Otherwise, the winner
pays a fixed amount gn (θ) that depends on the reported type θ and the number of bidders
n, similar to the standard first-price auction.97

B.2 Distinguishable Agents
When agents are distinguishable, we can drop the assumption of anonymity. Agents can be
heterogenous. The game can depend on the specific identities of the agents. In particular,
the disclosure policy φ is defined as a surjective mapping from the set of sets of agents N to
a set of signals Y , because not only the number of agents but also their identities matter.
The definition of partitional disclosure policies still applies here (Definition 18).

We follow the notation in Section 2.1. Consider a collection of games ΓN =
{

ΓN
}

N∈N
,

where each game ΓN is designed for each finite set of agents N ∈ N . The set of agents B is
random. Consider any partitional disclosure policy φ. When the realized set of agents is

95Komo, Kominers and Roughgarden (2024) assumes that the Dutch auction breaks ties determin-
istically according to an exogenous fixed priority order, providing the seller with prior knowledge of
whether a tie favors them. When the number of bidders is random, as in this paper, we must be
explicit about how the order is determined if such an order is adopted. Under anonymity, the priority
order should be drawn uniformly at random. Theorem 2 holds true irrespective of the tie-breaking
rule as long as it satisfies anonymity, because we focus on the safe deviations of the seller. In general,
our setting provides the seller with slightly less information, exposing them to the risk of winning
the auction in the event of a tie.

96In the continuous type space, the probability of a tie is zero. This auction degenerates to the
first-price auction.

97The fixed amount gn (θ) is determined by incentive compatibility constraints. See Appendix B.7
for details.

61



concealed, agents are allowed to play contingent strategies, i.e., a sequence of strategies that
depend on the set of agents. Recall that ΣN

i denotes the set of strategies for agent i ∈ N

in the game ΓN . When agent i observes a signal y ∈ Y , the set of strategies for agent i

under signal y is denoted by Σy
i ⊆ ×N∈φ−1(y)ΣN

i , with generic element σy
i =

(
σN

i

)
N∈φ−1(y)

.

As noted earlier, Σy
i does not have to be identical to ×N∈φ−1(y)ΣN

i . Under each signal
y, a type-strategy Sy

i =
(
SN

i

)
N∈φ−1(y)

for agent i maps from types to strategies, i.e.,
Sy

i : Θi → Σy
i . Let Σy

N = (Σy
i )i∈N and Sy

N = (Sy
i )i∈N denote the strategy space and strategy

profile respectively. We characterize mechanisms under partitional disclosure policies as
follows. Note that lit and dark mechanisms are special examples, where Y lit = N , φlit = idN

and Y dark = {d} , φdark ≡ d.

Definition 22.
{

(Γy, Σy
N, Sy

N)y∈Y , φ
}

is partitional Bayesian incentive-compatible if, for all
i ∈ N, all θi ∈ Θi, and all y ∈ Y ,

Sy
i (θi) ∈ arg max

σy
i ∈Σy

i

∑
N∈φ−1(y)

pi (N | y)Eθ−i∈Θn−1

[
uN

i

(
gΓN

(
σN

i , SN
−i (θ−i)

)
, θi

)]
,

where pi (N | y) = P (B = N | i ∈ B, y) is agent i’s belief that the set of agents is N under
signal y. In particular, we have:

•
(
ΓN , SN

N

)
is lit Bayesian incentive-compatible if, for all N ∈ N , all i ∈ N , and all

θi ∈ Θi,

SN
i (θi) ∈ arg max

σN
i ∈ΣN

i

Eθ−i∈ΘN\{i}

[
uN

i

(
gΓN

(
σN

i , SN
−i (θ−i)

)
, θi

)]
.

•
(
ΓN , Σd

N, Sd
N

)
is dark Bayesian incentive-compatible if, for all i ∈ N and all θi ∈ Θi,

Sd
i (θi) ∈ arg max

σd
i ∈Σd

i

∑
N∈N

pi (N)Eθ−i∈ΘN\{i}

[
uN

i

(
gΓN

(
σN

i , SN
−i (θ−i)

)
, θi

)]
,

where pi (N) = P (B = N | i ∈ B) is agent i’s belief that the set of agents is N .

Theorem 5 extends to the case of distinguishable agents. The proof follows Appendix A.7
but requires a slight change of notation. We omit the details for brevity.

B.3 Proof of Theorem 6
As shown in Appendix A.1, the second-price auction is efficient and ex-post buyer identity
compatible. We only need to show the remaining part that it maximizes expected revenue
among all such auctions.

62



Anonymity entails the symmetric tie-breaking rule. Then, efficiency implies that

qeff
i (θB) = 1

|W eff (θB)| , where W eff (θB) = { i ∈ B| θi = max {θB}} .

By Lemma 1, ex-post buyer identity compatibility implies strategy-proofness. Hence, for
each buyer i ∈ B, given any other buyers’ type profile θ−i ∈ Θ|B|−1, if i is the unique
winner by playing the equilibrium strategy of type θi, the winning payment must be fixed,
i.e., teff

i (θi, θ−i) = tw
i (θ−i) for all θi > max {θ−i}; if i ties with other buyers by playing the

equilibrium strategy of type θi, i.e., θi = max {θ−i}, the payment conditional on winning
tt
i (θ−i) must be weakly lower than tw

i (θ−i) by strategy-proofness, and be weakly lower than
max {θ−i} by ex-post individual rationality. Therefore, we have

tt
i (θ−i) = teff

i (max {θ−i} , θ−i)
qeff

i (max {θ−i} , θ−i)
≤ min {tw

i (θ−i) , max {θ−i}} .

When buyer i has type θi > max {θ−i}, buyer i obtains an equilibrium payoff of
θi − tw

i (θ−i) by using only one identity. With a set of identities Ni, buyer i can play
the equilibrium strategy of type θj = max {θ−i} for all j ∈ Ni, then i wins the tie with
probability

|Ni|
|W eff (θ−i, θNi)|

>
|Ni|

|Ni| + |B|
.

The payment conditional on winning is tt
i

(
θ−i, θNi\{i}

)
.98 Ex-post buyer identity compati-

bility ensures that buyer i cannot profit from using any number of identities in any case. In
particular, for any |Ni| ∈ N, we have

EB

[
Eθ−i∈Θ|B|−1

[
(θi − tw

i (θ−i)) 1θi>max{θ−i}
]∣∣∣ i ∈ B

]
+ EB

[
Eθ−i∈Θ|B|−1

[
θi − tt

i (θ−i)
|W eff (θB)| 1θi=max{θ−i}

]∣∣∣∣∣ i ∈ B

]
(8)

≥EB

Eθ−i∈Θ|B|−1

 |Ni|
(
θi − tt

i

(
θ−i, θNi\{i}

))
|W eff (θ−i, θNi)|

1θi≥max{θ−i}

∣∣∣∣∣∣ i ∈ B


>EB

Eθ−i∈Θ|B|−1

 |Ni|
(
θi − tt

i

(
θ−i, θNi\{i}

))
|Ni| + |B|

1θi≥max{θ−i}

∣∣∣∣∣∣ i ∈ B


=
∑
n∈N

P ( |B| = n| i ∈ B)Eθ−i∈Θn−1

 |Ni|
(
θi − tt

i

(
θ−i, θNi\{i}

))
|Ni| + n

1θi≥max{θ−i}

 . (9)

98By anonymity, we have tt
i

(
θ−i, θNi\{i}

)
= tt

j

(
θ−i, θNi\{j}

)
for all i, j ∈ Ni.
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The left-land side (8) is the equilibrium payoff of buyer i when using only one identity,
while the right-hand side (9) is the deviation payoff of buyer i when using a set of identities
Ni and following the strategy that θj = max {θ−i} for all j ∈ Ni. Ex-post buyer identity
compatibility entails that (9) serves as a lower bound for (8). When an auction is efficient,
maximizing revenue is equivalent to minimizing buyers’ equilibrium payoffs. Thus, to prove
the theorem, it suffices to show that the second-price auction attains the lowest equilibrium
payoffs for buyers among all efficient auctions that are ex-post buyer identity-compatible.

Because the expected number of buyers is finite, buyer i’s expected number of competitors
is also finite,99 i.e.,

∑
n∈N

nP ( |B| = n| i ∈ B) =
∑

n∈N nP (|B| = n, i ∈ B)
P (i ∈ B) ≤

∑
n∈N nP (|B| = n)

P (i ∈ B) < ∞.

Therefore, when buyer i employs an arbitrarily large number of identities, we can interchange
limits as follows:

lim
|Ni|→∞

∑
n∈N

P ( |B| = n| i ∈ B)Eθ−i∈Θn−1

 |Ni|
(
θi − tt

i

(
θ−i, θNi\{i}

))
|Ni| + n

1θi≥max{θ−i}


=
∑
n∈N

P ( |B| = n| i ∈ B) lim
|Ni|→∞

Eθ−i∈Θn−1

 |Ni|
(
θi − tt

i

(
θ−i, θNi\{i}

))
|Ni| + n

1θi≥max{θ−i}


=
∑
n∈N

P ( |B| = n| i ∈ B)Eθ−i∈Θn−1

 lim
|Ni|→∞

|Ni|
(
θi − tt

i

(
θ−i, θNi\{i}

))
|Ni| + n

1θi≥max{θ−i}


=
∑
n∈N

P ( |B| = n| i ∈ B)Eθ−i∈Θn−1

[(
θi − tt

i

(
θ−i, θNi\{i}

))
1θi≥max{θ−i}

]
≥
∑
n∈N

P ( |B| = n| i ∈ B)Eθ−i∈Θn−1

[
(θi − max {θ−i}) 1θi≥max{θ−i}

]
,

where the last inequality follows from the fact that

tt
i

(
θ−i, θNi\{i}

)
≤ max

{
θ−i, θNi\{i}

}
= max {θ−i} .

Hence, the equilibrium payoff of buyer i in any efficient auction that is ex-post buyer
identity-compatible satisfies:

(8) ≥ lim
|Ni|→∞

(9) =
∑
n∈N

P ( |B| = n| i ∈ B)Eθ−i∈Θn−1

[
(θi − max {θ−i}) 1θi≥max{θ−i}

]
.

99We can ignore buyers who participate in the auction with probability zero, i.e., P (i ∈ B) = 0.
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Since the second-price auction attains this lower bound, it maximizes expected revenue
among all efficient auctions that are ex-post buyer identity-compatible.

B.4 Proof of Theorem 2 (Finite Type Space)
As in Appendix A.2, we prove by showing that, for any optimal (or optimally efficient) lit
auction, and any set of buyers B, the seller can always strictly benefit from using a single
identity. In the finite type space, we demonstrate that the seller can achieve this through
only safe deviations—i.e., deviations in which the seller never wins the auction when shill
bidding. Hence, the result holds irrespective of the tie-breaking rule as long as it satisfies
anonymity. The following argument focuses on optimal auctions, but the same logic applies
to optimally efficient auctions by letting the reserve price ρ∗ be zero.

Consider a set of bidders N = B ∪ {0}, where bidder 0 is the identity controlled by the
seller and every one else is a distinct buyer. The optimal allocation rule requires that the
item is always sold to the bidder of the highest type conditional on being above the reserve
price ρ∗ (Lovejoy, 2006; Elkind, 2007). Now we focus on the expected payment of buyer
i ∈ B conditional on being the highest type θi = max {θB, θ0} > ρ∗.100 Notice that being
the highest type is not equivalent to winning the auction because of ties. Let θ−i = θB\{i}

and θ−i = max
{

θB\{i}
}

. We obtain the following breakdown of this expected payment:

T N
i (θi) =Eθ−i,θ0

[
topt
i (θi, θ−i, θ0)

∣∣∣ θi ≥ max
{

θ−i, θ0
}]

=x1 × Px1 + x2 × Px2 + x3 × Px3 + x4 × Px4 ,

where,

x1 =Eθ−i,θ0

[
topt
i (θi, θ−i, θ0)

∣∣∣ θi > max
{

θ−i, θ0
}]

,

x2 =Eθ−i,θ0

[
topt
i (θi, θ−i, θ0)

∣∣∣ θi = θ0 > θ−i

]
,

x3 =Eθ−i,θ0

[
topt
i (θi, θ−i, θ0)

∣∣∣ θi = θ−i > θ0
]

,

x4 =Eθ−i,θ0

[
topt
i (θi, θ−i, θ0)

∣∣∣ θi = θ0 = θ−i

]
,

Px1 =P
(

θi > max
{

θ−i, θ0
}∣∣∣ θi ≥ max

{
θ−i, θ0

})
,

Px2 =P
(

θi = θ0 > θ−i

∣∣∣ θi ≥ max
{

θ−i, θ0
})

,

100Under optimality, buyers of type ρ∗ always pay exactly ρ∗ conditional on winning. We assume
the existence of a type θi > ρ∗; otherwise, the highest type would be θK = ρ∗, in which case the
optimal auction reduces to the posted-price mechanism with the price ρ∗, which is ex-post seller
identity-compatible.
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Px3 =P
(

θi = θ−i > θ0
∣∣∣ θi ≥ max

{
θ−i, θ0

})
,

Px4 =P
(

θi = θ0 = θ−i

∣∣∣ θi ≥ max
{

θ−i, θ0
})

.

Now we discuss how the seller can at least push up the payment of buyer i ∈ B safely
by pretending to be bidder 0 of type θ′

0 if the seller knows the type profile of buyers θB.
Safety for the seller means that the seller will never tie with buyer i and end up winning the
auction with some probability.

1. θi > max
{

θ−i, θ0
}

: The seller will maximize pointwise the payment for each type
profile. We have

x′
1 = Eθ−i,θ0

[
sup

θ′
0<θi

topt
i

(
θi, θ−i, θ′

0
)∣∣∣∣∣ θi > max

{
θ−i, θ0

}]

≥ Eθ−i,θ0

[
topt
i (θi, θ−i, θ0)

∣∣∣ θi > max
{

θ−i, θ0
}]

= x1.

2. θi = θ0 > θ−i: The seller will pretend to be a bidder of a lower type θ′
0 < θi to avoid

winning the auction with some probability. Moreover, the seller will do it in the
optimal way as in the case where θi > max

{
θ−i, θ0

}
. Hence, we have

x′
2 = Eθ−i,θ0

[
sup

θ′
0<θi

topt
i

(
θi, θ−i, θ′

0
)∣∣∣∣∣ θi = θ0 > θ−i

]

= Eθ−i,θ0

[
sup

θ′
0<θi

topt
i

(
θi, θ−i, θ′

0
)∣∣∣∣∣ θi > max

{
θ−i, θ0

}]

= x′
1 ≥ x1.

3. θi = θ−i > θ0: The seller will maximize pointwise the payment for each type profile.
We have

x′
3 = Eθ−i,θ0

[
sup

θ′
0<θi

topt
i

(
θi, θ−i, θ′

0
)∣∣∣∣∣ θi = θ−i > θ0

]

≥ Eθ−i,θ0

[
topt
i (θi, θ−i, θ0)

∣∣∣ θi = θ−i > θ0
]

= x3.

4. θi = θ−i = θ0: The seller will pretend to be a bidder of a lower type θ′
0 < θi to avoid

winning the auction with some probability. Moreover, the seller will do it in the
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optimal way as in the case where θi = θ−i > θ0. Hence, we have

x′
4 = Eθ−i,θ0

[
sup

θ′
0<θi

topt
i

(
θi, θ−i, θ′

0
)∣∣∣∣∣ θi = θ0 = θ−i

]

= Eθ−i,θ0

[
sup

θ′
0<θi

topt
i

(
θi, θ−i, θ′

0
)∣∣∣∣∣ θi = θ−i > θ0

]

= x′
3 ≥ x3.

In total, by pretending to be bidder 0 of type θ′
0, the seller can at least safely push up the

expected payment of buyer i ∈ B conditional on being the highest type θi = max {θB} > ρ∗

to

T̂ N
i (θi) = Eθ−i

[
sup

θ′
0<θi

topt
i

(
θi, θ−i, θ′

0
)∣∣∣∣∣ θi ≥ θ−i

]

= x′
1 × Px1 + x′

2 × Px2 + x′
3 × Px3 + x′

4 × Px4

≥ x1 × Px1 + x1 × Px2 + x3 × Px3 + x3 × Px4 (10)

= x1 × (Px1 + Px2) + x3 × (Px3 + Px4)

= (1 + h) (x1 × Px1 + x3 × Px3) ,

where

h = Px2

Px1
= Px4

Px3
=

P
(

θi = θ0| θi ≥ max
{

θ−i, θ0
})

P
(

θi > θ0| θi ≥ max
{

θ−i, θ0
}) ,

because types are independent. Ex-post individual rationality implies that

x2 = Eθ−i,θ0

[
topt
i (θi, θ−i, θ0)

∣∣∣ θi = θ0 > θ−i

]
≤ θiEθ−i,θ0

[
qopt

i (θi, θ−i, θ0)
∣∣∣ θi = θ0 > θ−i

]
,

x4 = Eθ−i,θ0

[
qopt

i (θi, θ−i, θ0)
∣∣∣ θi = θ0 = θ−i

]
≤ θiEθ−i,θ0

[
qopt

i (θi, θ−i, θ0)
∣∣∣ θi = θ0 = θ−i

]
.

Then,

x1 × Px1 + x3 × Px3

=T N
i (θi) − (x2 × Px2 + x4 ∗ Px4) (11)

≥T N
i (θi) − θiEθ−i,θ0

[
qopt

i (θi, θ−i, θ0)
∣∣∣ θi = θ0 ≥ θ−i

]
P
(

θi = θ0| θi ≥ max
{

θ−i, θ0
})

.
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Notice that optimality under anonymity pins down the expected payment of buyer i.101

Ex-post individual rationality implies that the payment conditional on not being the highest
or θi < ρ∗ is zero. Conditional on winning the tie, buyer i of type ρ∗ pays exactly ρ∗ under
optimality. Hence, the expected payment of buyer i conditional on being the highest type
θi > ρ∗, i.e., T N

i (θi), is fixed. Combining (10) and (11), we observe that the minimum of
T̂ N

i (θi) can be obtained by the tie-corrected first-price auction with the reserve price ρ∗:
when bidders tie with type θ ≥ ρ∗, they pay θ.102 Ties are broken uniformly at random.
Otherwise, the unique winner pays a fixed payment gn (θ) ≥ ρ∗, where n = |N | is the number
of bidders in the auction. The exact value of gn (θ) is determined by incentive compatibility
constraints.103 (See Appendix B.7.)

Intuitively, in the tie-corrected first-price auction with the reserve price ρ∗, the seller
incurs the greatest loss by not tying with buyers. Furthermore, the seller cannot manipulate
the payment when they lose the auction. This is the “worst” optimal auction for the seller,
which characterizes the lowest expected payment from buyer i to the seller who pretends to
be bidder 0 safely, i.e.,

Eθ−i

[
sup

θ′
0<θi

topt
i

(
θi, θ−i, θ′

0
)]

≥Eθ−i

[
gn (θi) × 1θi>θ−i

+ θiq
opt
i (θi, θ−i) × 1θi=θ−i

]
.

Notice that conditional on θi = θj , the payment for buyer i is the same as that for buyer
j under anonymity, i.e., topt

i (θB, θ′
0) = topt

j (θB, θ′
0). In particular, we have

sup
θ′

0<θi=θj=θB

topt
i

(
θB, θ′

0
)

+ sup
θ′

0<θi=θj=θB

topt
j

(
θB, θ′

0
)

= sup
θ′

0<θi=θj=θB

{
topt
i

(
θB, θ′

0
)

+ topt
j

(
θB, θ′

0
)}

.

In general, we have

sup
θ′

0<θB

∑
i∈B

topt
i

(
θB, θ′

0
)

=
∑
i∈B

sup
θ′

0<θB

topt
i

(
θB, θ′

0
)

.

Then, we can characterize the lower bound of the expected revenue for the seller by employing
101In particular, it is pinned down by the local downward incentive compatibility constraints which

bind under optimality (Lovejoy, 2006; Elkind, 2007).
102In the continuous type space, the probability of a tie is zero. This auction degenerates to the

first-price auction (with reserve).
103We assume gn (θ) = 0 when θ < ρ∗ for convenience.
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a fake identity and playing safely in the optimal lit auction for any set of buyers B as follows:

EθB

 sup
θ′

0<θB

∑
i∈B

topt
i

(
θB, θ′

0
) =

∑
i∈B

EθB

 sup
θ′

0<θB

topt
i

(
θB, θ′

0
)

=
∑
i∈B

EθB

[
gn (θi) × 1θi>θ−i

+ θiq
opt
i (θi, θ−i) × 1θi=θ−i

]
.

By the Revenue Equivalence Theorem in the finite type space (Lovejoy, 2006; Elkind,
2007), any optimal auction for a set of buyers B generates the same expected revenue as
in the tie-corrected first-price auction with the reserve price ρ∗ for the same set of buyers,
since both are optimal auctions. Note that |B| = |N | − 1 = n − 1. Then, we have

EθB

[∑
i∈B

topt
i (θB)

]
=
∑
i∈B

EθB

[
topt
i (θB)

]
=
∑
i∈B

EθB

[
gn−1 (θi) × 1θi>θ−i

+ θiq
opt
i (θi, θ−i) × 1θi=θ−i

]
.

In Appendix B.7, we show that for all θi > ρ∗, and all n ∈ N, we have

gn−1 (θi) < gn (θi) .

Therefore,

EθB

[∑
i∈B

topt
i (θB)

]
< EθB

 sup
θ′

0<θB

∑
i∈B

topt
i

(
θB, θ′

0
) .

Because B is any arbitrary set of buyers, we have

EB

[
EθB

[∑
i∈B

topt
i (θB)

]]
< EB

[
EθB

[
sup

θ0<θB

∑
i∈B

topt
i (θB, θ0)

]]
,

which violates ex-post seller identity compatibility.

B.5 Second-Price Auction with a Fixed Priority Order
Assume the fixed priority order is such that we always break ties by giving the item to the
lowest-numbered buyer. Then the allocation rule is qp-2nd

i (θB) = 1i=W p-2nd(θB), where

W p-2nd (θB) = min { i ∈ B| θi = max {θB}} ,
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and the payment rule is

tp-2nd
i (θB) = qp-2nd

i (θB) × min
{

θ′
i ∈ Θ

∣∣ i = W p-2nd (θ′
i, θ−i

)}
.

For example, let B = {1, 2} and Θ =
{

θL, θH
}

, where θH > θL. Then104

tp-2nd
1

(
θH , θL

)
= θL, but tp-2nd

2

(
θL, θH

)
= θH .

Buyer 1 of type θH has positive payoff, whereas buyer 2 of type θH has zero payoff. In general,
the higher the priority, the higher the expected payoff for the buyer in the second-price
auction. If the priority order is drawn uniformly at random in advance, buyers can strictly
benefit from using multiple identities in order to increase the chance of drawing a high
priority. After the priority order is drawn, buyers will bid truthfully for the identity that has
the highest priority, and bid the lowest type for all other identities. By doing so, buyers will
never be harmed by the additional identities, and the resulting payment rule for buyers is the
same as the one by ignoring those identities with lower priorities. Hence, the second-price
auction with a fixed priority order drawn uniformly at random for breaking ties is not
Bayesian buyer identity-compatible.

Now we consider the tie-corrected second-price auction, which is actually the direct
mechanism of the second-price auction with a fixed priority order drawn uniformly at random
for breaking ties.

B.6 Tie-Corrected Second-Price Auction
From Myerson (1981), Lovejoy (2006), and Elkind (2007), we know that optimality in the
regular auction implies that the seller always gives the item to the buyer who has the highest
type conditional on being above the reserve price ρ∗. Under the symmetric tie-breaking rule,
which follows from anonymity, the allocation rule is pinned down as qopt

i (θB) = 1
|W opt(θB)| ,

where
W opt (θB) = { i ∈ B| θi = max {θB} and θi ≥ ρ∗} .

Notice that strategy-proofness is not enough to pin down the payment rule.105 In the finite
type space, Lovejoy (2006) and Elkind (2007) point out that optimal auctions require that
the local downward incentive compatibility constraints must be binding, whereas the local
upward incentive compatibility constraints can be slack. Specifically, in the optimal auction

104tp-2nd
i

(
θL, θL

)
= θL and tp-2nd

i

(
θH , θH

)
= θH for all i ∈ {1, 2}.

105Both the second-price auction and the tie-corrected one are strategy-proof under the same
allocation rule.
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that is strategy-proof, buyer i ∈ B of type θk finds it indifferent between bidding θk and
θk−1, given any other bidders’ type profile θ−i ∈ Θ|B|−1. Then, the payment rule is pinned
down as

ttc-2nd
i (θB) =



1∣∣W opt
(

θt
i ,θ−i

)∣∣θt
i +

(
1 − 1∣∣W opt

(
θt

i ,θ−i

)∣∣) θw
i if θi ≥ θw

i ,

1∣∣W opt
(

θt
i ,θ−i

)∣∣θt
i if θi = θt

i ,

0 otherwise,

where
θw

i = min
{

θi ∈ Θ| qopt
i (θi, θ−i) = 1

}
is the lowest unique winning type for buyer i,

θt
i = min

{
θi ∈ Θ| qopt

i (θi, θ−i) > 0
}

is the tying type for buyer i, and 1∣∣W opt
(

θt
i ,θ−i

)∣∣ is the probability of winning for buyer i

of the tying type. We refer to this auction as the tie-corrected second-price auction (with
reserve), which is pinned down by strategy-proofness and optimality in the finite type space.

For comparison, we also present the second-price auction under the symmetric tie-
breaking rule here. The allocation rule is the same as before. The payment rule is

t2nd
i (θB) =


θt

i if θi ≥ θw
i ,

1∣∣W opt
(

θt
i ,θ−i

)∣∣θt
i if θi = θt

i ,

0 otherwise.

Notice that buyers pay strictly less in the second-price auction than in the tie-corrected
one, where the unique winning bidder i is asked to pay between i’s lowest unique winning
type (strictly higher than the second-highest bid in the finite type space) and i’s tying type
(the second-highest bid), with the weight on the tying type equal to the probability that
i wins the tie. Hence, the second-price auction under the symmetric tie-breaking rule is
not optimal in the finite type space. The two auctions are equivalent when ties occur with
probability zero.106 For example, in the continuous (or some asymmetric) type space, we
have θw

i = θt
i and

∣∣W opt (·)
∣∣ ∈ {0, 1}.

In the previous example, we have ttc-2nd
1

(
θH , θL

)
= ttc-2nd

2

(
θL, θH

)
= θH+θL

2 . Notice
that this is also the payment rule when the fixed priority order is drawn uniformly at

106If P (θi = max {θ−i}) = 0, then θw
i = θt

i .
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random. In fact, the second-price auction with a fixed priority order (with reserve) is also
optimal. When the priority order is drawn uniformly at random, the payment rule under
randomization is identical to that of the tie-corrected second-price auction. Hence, the
tie-corrected second-price auction is the direct mechanism of the second-price auction with
a fixed priority order drawn uniformly at random for breaking ties.

We can easily check that the tie-corrected second-price auction is indeed strategy-proof
for all buyers i ∈ B. If θi < θt

i , buyer i finds it not profitable to win the auction by bidding
higher, because the winning payment is strictly higher than θi. If θi = θt

i , buyer i has payoff
zero for truthful bidding, is indifferent to losing the auction, and finds it not profitable to be
the unique winner by bidding higher when possible, because the winning payment is strictly
higher than θt

i . If θi > θw
i , buyer i find it strictly worse off by bidding θt

i (or less), because
the gain from the decrease in the payment cannot make up the loss from the decrease in
the probability of winning. If θi = θw

i , buyer i has positive payoff for truthful bidding, finds
it strictly worse off by losing the auction, and is indifferent between bidding θt

i and θw
i

(or more), because i pays exactly θi for the increased probability of winning. Hence, the
tie-corrected second-price auction is strategy-proof.

However, the tie-corrected second-price auction is not ex-post buyer identity-compatible.
It is always profitable for buyer i ∈ B of type θi ≥ θw

i to bid θt
i under a sufficiently large

number of identities. By doing so, buyer i wins the tie with probability sufficiently close to
one, and hence avoids the loss from the decrease in the probability of winning by bidding
less. At the same time, the winning payment strictly decreases from the unique winning
payment to the tying payment θt.

The second-price auction is ex-post buyer identity-compatible. However, the second-price
auction (with reserve) does not maximize expected revenue among all auctions that are
ex-post identity-compatible. For example, if the probability of k buyers showing up in the
auction is sufficiently close to one, and the probability of having more than k buyers is
sufficiently close to zero, then the auctioneer can run the second-price auction (with reserve)
up to k−1 bidders, run the tie-corrected one (with reserve) only for k bidders, and commit to
no sale for more than k bidders. Then, this auction is ex-post buyer identity-compatible, and
generates higher expected revenue than always running the second-price auction, because it
performs strictly better when there are k bidders.

B.7 Tie-Corrected First-Price Auction
In the tie-corrected first-price auction with the reserve price ρ∗, bidders report their types
in the auction, and whoever reports the highest wins the auction. In case of a tie at the
type θk ≥ ρ∗, bidders pay θk by breaking ties uniformly at random. Otherwise, the unique
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winner pays a fixed amount gn
(
θk
)

≥ ρ∗, where n = |N | is the number of bidders in the

auction.107 Recall that fk = P
(
θi = θk

)
. The cumulative distribution function is defined as

Fk =
∑k

m=1 fm.108 Recall that the optimal reserve price is defined as

ρ∗ = min
{

θk ∈ Θ
∣∣∣ v (θk

)
≥ 0

}
= θk∗

.

The expected payoff of bidder i of type θk > θk∗ is

Ui

(
θk
∣∣∣ θk
)

=
(
θk − gn

(
θk
))

P
(
∀j ∈ N\ {i} : θk > θj

)
=
(
θk − gn

(
θk
))

Pn−1
(
θk > θj

)
=
(
θk − gn

(
θk
))

F n−1
k−1 ,

The expected payoff of bidder i when misreporting type θk−1 is

Ui

(
θk−1

∣∣∣ θk
)

=
(
θk − gn

(
θk−1

))
P
(
∀j ∈ N\ {i} : θk−1 > θj

)
+
(
θk − θk−1

) n−1∑
m=1

P
(
m additional bidders tie at the type θk−1

)
m + 1

=
(
θk − gn

(
θk−1

))
F n−1

k−2

+
(
θk − θk−1

) n−1∑
m=1

(n−1
m

)
fm

k−1F n−1−m
k−2

m + 1 .

Here
(n−1

m

)
is the number of ways of selecting m bidders out of n − 1 bidders to tie with

bidder i. We have m + 1 in the denominator because of breaking ties uniformly at random.
The summation accounts for all winning probabilities at ties with different numbers of
bidders.

n−1∑
m=1

(n−1
m

)
fm

k−1F n−1−m
k−2

m + 1

=
n−1∑
m=1

(n − 1)!
(m + 1)! (n − 1 − m)!f

m
k−1F n−1−m

k−2

=
n∑

m=2

(n − 1)!
m! (n − m)!f

m−1
k−1 F n−m

k−2

= 1
nfk−1

(
(fk−1 + Fk−2)n − F n

k−2 − nfk−1F n−1
k−2

)
107We assume that gn

(
θk
)

= 0 when θk < ρ∗ for convenience.
108Fk = 0 when k < 1.
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= 1
nfk−1

(
F n

k−1 − F n
k−2

)
− F n−1

k−2 .

Then, we have

Ui

(
θk−1 | θk

)
=
(
θk − gn

(
θk−1

))
F n−1

k−2

+
(
θk − θk−1

) [ 1
nfk−1

(
F n

k−1 − F n
k−2

)
− F n−1

k−2

]
.

=
(
θk−1 − gn

(
θk−1

))
F n−1

k−2

+
(
θk − θk−1

) F n
k−1 − F n

k−2
nfk−1

.

Optimality implies that the downward local incentive compatibility constraints must
bind in equilibrium (Lovejoy, 2006; Elkind, 2007). Hence, Ui

(
θk
∣∣∣ θk
)

= Ui

(
θk−1

∣∣∣ θk
)
, and

we have

(
θk − gn

(
θk
))

F n−1
k−1 =

(
θk−1 − gn

(
θk−1

))
F n−1

k−2 +
(
θk − θk−1

) F n
k−1 − F n

k−2
nfk−1

.

Since bidders of the lowest possible winning type have zero payoffs, it follows that gn
(
θk∗
)

=
θk∗ . Therefore,

(
θk − gn

(
θk
))

F n−1
k−1 =

k∑
m=k∗+1

(
θm − θm−1

) F n
m−1 − F n

m−2
nfm−1

,

and

gn
(
θk
)

= θk −
k∑

m=k∗+1

(
θm − θm−1

) F n
m−1 − F n

m−2
nfm−1F n−1

k−1
(12)

Notice that gn
(
θk
)

< θk and limn→∞ gn
(
θk
)

= θk.109 In particular,

gn+1
(
θk
)

− gn
(
θk
)

=
k∑

m=k∗+1

(
θm − θm−1

)(F n
m−1 − F n

m−2
nfm−1F n−1

k−1
−

F n+1
m−1 − F n+1

m−2
(n + 1) fm−1F n

k−1

)
,

109As a simple check, when dθ = θm − θm−1 → 0 and fm−1 → 0, the payment rule (12) becomes the
equilibrium bidding function in the first-price auction with the reserve price ρ∗ in the continuous type

space, i.e., bi (θ) = θ −
∫ θ

ρ∗ F n−1(s)ds

F n−1(θ) . Notice that our auction is different from the first-price auction
in the finite type space because of the different payment in case of a tie. However, the difference
disappears in the continuous type space because the probability of a tie is zero. Hence, it should
reduce to the first-price auction with the reserve price ρ∗ in the continuous type space when taking
limits.
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where,

F n
m−1 − F n

m−2
nfm−1F n−1

k−1
−

F n+1
m−1 − F n+1

m−2
(n + 1) fm−1F n

k−1

=
(n + 1)

(
F n

m−1 − F n
m−2

)
Fk−1 − n

(
F n+1

m−1 − F n+1
m−2

)
n (n + 1) fm−1F n

k−1

≥
(n + 1)

(
F n

m−1 − F n
m−2

)
Fm−1 − n

(
F n+1

m−1 − F n+1
m−2

)
n (n + 1) fm−1F n

k−1

=
(
F n

m−1 − F n
m−2

)
Fm−1 + [nFm−2 − nFm−1] F n

m−2
n (n + 1) fm−1F n

k−1

=
∑n−1

i=0

(
F i+1

m−1F n−1−i
m−2 − F n

m−2

)
n (n + 1) F n

k−1

>

∑n−1
i=0

(
F i+1

m−2F n−1−i
m−2 − F n

m−2

)
n (n + 1) F n

k−1
= 0.

Hence, for all θk ≥ ρ∗,
gn
(
θk
)

< gn+1
(
θk
)

.

75


	Introduction
	Related Literature
	Outline of the Paper

	Model
	Collection of Games
	Auctions with an Unknown Number of Buyers
	Identities
	Auctions


	Identity Compatibility in Lit Auctions
	Buyer Identity Compatibility
	Seller Identity Compatibility

	Dark Auctions
	Dark Mechanisms
	Optimal Dark Auctions
	Identity Compatibility in Dark Auctions
	Buyer Identity Compatibility
	Seller Identity Compatibility


	Discussion
	Identity Compatibility for Both Parties
	Disclosure Policy
	Implementation via Extensive Forms
	Distinguishable Agents

	Proofs Omitted from the Main Text
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Lemma 2
	Proof of Proposition 3
	Proof of Theorem 4
	Proof of Theorem 5

	Online Appendix
	Finite Type Space
	Distinguishable Agents
	Proof of Theorem 6
	Proof of Theorem 2 (Finite Type Space)
	Second-Price Auction with a Fixed Priority Order
	Tie-Corrected Second-Price Auction
	Tie-Corrected First-Price Auction


