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Abstract

We study the design of mechanisms—e.g., auctions—when the designer does

not control information flows between mechanism participants. A mechanism

equilibrium is leakage-proof if no player conditions their actions on leaked infor-

mation; a property distinct from ex-post incentive compatibility. Only leakage-

proof mechanisms can implement social choice functions in environments with

leakage. Efficient auctions need to be leakage-proof, while revenue-maximizing

ones not necessarily so. Second-price and ascending auctions are leakage-proof;

first-price auctions are not; while whether descending auctions are leakage-proof

depends on tie-breaking.
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A small leak will sink a great ship. (Benjamin Franklin)

1 Introduction

Standard mechanism design focuses on environments in which the mechanism designer

has complete control over the extensive-form game the mechanism participants play,

including complete control over who observes the moves they make. This complete

control assumption underlies the revelation principle (Myerson, 1981) and many other

insights in mechanism design. In many modern market environments, however, the

designer cannot fully control what players observe. In this paper, we study mechanism

design in such environments.

For example, many online auctions are prone to so-called eavesdropping attacks,

in which some participants can listen to the network for upcoming bids and use this

information to their advantage when submitting their own bids; in the presence of

eavesdropping, the designer does not have complete control over what the bidders

observe.1 In financial markets, participants with fast access to trading venues can be

the first to assess the limit order book and execute their trade orders more quickly

than competitors, thereby capturing transient arbitrage opportunities. These market

participants have more flexibility over what they observe than the market designer

may want to grant them.2 In peer-to-peer networks, such as blockchains, faster

participants also observe slower participants’ actions. Exploiting this information—

known as front-running—frequently occurs on so-called decentralized exchanges and

is regarded as one of the most pressing problems of blockchain technology.3

To see the implications of information leakage (or eavesdropping), consider the

sale of an object to one of two bidders who have private values drawn independently

from the same distribution. In absence of information leakage, the first-price auction

with no reserve is efficient while the first-price auction with optimal reserve is revenue

1For institutional details on eavesdropping attacks, see, e.g., Franklin and Reiter (1996).
2The speed of access is so vital that some large traders place their servers as close to the exchange

as possible and connect the two via dedicated optical fiber connections, resulting in what is sometimes
referred to as a high-frequency trading arms race (Budish, Cramton, and Shim, 2015).

3See, e.g., Eskandari, Moosavi, and Clark (2020). Blockchains are ledgers that record transac-
tions. New transactions are added to blockchains in batches, called blocks. The production of new
blocks happens in discrete time intervals. Between block production, the recent transactions are
stored in the network. By design, the network is open, and any participant can inspect upcoming
transactions.
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maximizing. Both of these properties of first-price auctions break in the presence of

information leakage. Indeed, suppose the the bid of the first bidder is seen by the

second bidder before the second bidder submits their bid. The second bidder may

then condition their bid on the bid of the first bidder, which breaks both efficiency

and revenue-maximization of first-price auctions. Indeed, efficiency fails as, in any

equilibrium, all but one types of the first bidder bid below their own value thus

allowing the second bidder to win the auction when their value is lower than that

of the first bidder but still above the bid of the first bidder. Similarly, revenue-

maximization fails because the information leakage makes it impossible to always

assign the object to the bidder with higher Myersonian virtual value.4

We study a designer who can choose any finite extensive-form game with perfect

recall but does not control what history of the game the players see. Even when two

or more players are to move simultaneously in the game chosen by the designer, some

of them (“faster” players) might see the moves made by others (“slower” players)

before deciding on their own move.5 The information about players’ moves might

hence leak to other players and the designer cannot prevent it.

In this setting we first address the question of what extensive-form game can im-

plement an arbitrarily fixed (implementable) social choice function. We show that

a game implements the social choice function if and only if it admits an equilib-

rium in which all players pursue strategies that are independent of the leaked in-

formation and this equilibrium implements the social choice function. We call such

equilibria—in which leaked information is effectively ignored by the players—leakage-

proof. Leakage-proofness is hence a necessary condition for implementability in en-

vironments in which the designer does not control information flows between the

players.

We then address the more applied problems of designing efficient auctions and

revenue-maximizing auctions. We show that an auction is efficient only if it admits a

leakage-proof ε-equilibrium that always results in efficient outcome. Second-price (and

ascending) auctions remain efficient in the presence of leakage, whether we impose a

4We provide more details on this example in Section 2.
5For expositional reasons, we focus on games that allow simultaneous moves but otherwise have

perfect information. All our insights remain true for general imperfect-information games. Not only
all of our arguments extend to the general case, also our results directly imply the analogous results
for the general case. The reason is simple: we are interested in mechanisms that perform well in the
presence of leakage, including leakage that reveals to every player the history of past play.
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common prior assumption or whether we allow heterogeneous priors. In contrast, first-

price auctions are no longer efficient in the presence of leakage. When bidders share a

common prior, then second-price (and ascending) auctions with optimally set reserve

price are revenue maximizing. In contrast, neither the second-price nor the first-price

auctions maximize revenue independent of bidders’ beliefs about leakage. Indeed, the

truthful-bidding equilibria in these mechanisms are leakage-proof and hence attain

the Myersonian revenue upper bound irrespective of leakage. In light of the above-

discussed example, for some leakage priors second-price and ascending auctions raised

noticeably more revenue than many other mechanisms, including first-price auctions.

Beyond the common prior environment, the second-price and ascending auctions may

however fail to maximize revenue. For instance, if no bidder can eavesdrop on other

bidders but all bidders are concerned about the possibility that their bid leaks to

others, then the first-price auction with optimal reserve achieves higher revenue than

the second-price (and ascending) auctions.

We further show that pure-strategy ex-post equilibria are always leakage-proof,

but mixed-strategy ex-post equilibria are not necessarily so. Also, static (one simul-

taneous move) leakage-proof equilibria are also ex-post equilibria, but this property

does not extend to leakage-proof equilibria of dynamic mechanisms.

Finally, as discussed above, second-price (and ascending) auctions are leakage-

proof while first-price auctions are not. Interestingly, whether descending (Dutch)

auctions are leakage-proof depends on the tie-breaking rule employed in them. Un-

der the standard equal-probability of winning tie-break rules, Dutch auctions are

not leakage-proof. However, these auctions become leakage-proof if the good is not

allocated in case of a tie-break.

1.1 Related Literature

While we believe we are the first to systematically study information leakage in a

mechanism design framework, information flows have been studied in games and ap-

plied economic contexts. In particular, Solan and Yariv (2004) consider two-player

normal-form games, in which one player can noisily observe the strategy of the other

player at some cost, and fully characterize the distributions over the players’ payoffs

that can obtain in equilibrium. Penta and Zuazo-Garin (2022) characterize the pre-

dictions of rationality and common belief in rationality that do not depend on players’

4



infinite order beliefs over whether their actions are observable to their opponents.6

Ex-post equilibrium (Hurwicz, 1972; Dasgupta, Hammond, and Maskin, 1979a)

may be motivated by the concern about leakage of information about players’ types,

as opposed to actions.7 As we show, these two concerns are distinct. Madarász (2011)

and Madarász (2012) study the impact of beliefs about leakage of type information on

Coasian dynamics, while Daley and Green (2012) study the impact of the exogenous

arrival of news on types in Coasian dynamics.8

By studying leakage, we contribute to the recent wave of literature that differen-

tiate between auction mechanism on the ground of their robustness to attacks such

as (the lack of) credibility (Akbarpour and Li, 2020; Banchio, Skrzypacz, and Yang,

2025), auditability (Woodward, 2020), or shill-bidding (e.g., Komo, Kominers, and

Roughgarden, 2024; Zeng, 2025). While this literature focuses on the seller’s inability

to fully commit, we study the seller’s inability to control information flows.

We also contribute to the literature on misspecified beliefs in mechanisms and

markets (Ledyard, 1978; Bergemann and Morris, 2005; Chu and Shen, 2006; Chassang,

2013; Carroll, 2015; Wolitzky, 2016; Madarász and Prat, 2017; Li, 2017; Börgers and

Li, 2019; Pycia and Troyan, 2023; Li r○ and Dworczak, 2024). While the main thrust

of this literature is that robustness to misspecification requires the mechanism to be

simple, we show that achieving efficiency in a way that is robust to misspecification

requires the mechanism to be leakage-proof.9

Our analysis of leakage is relevant for many applied problems. In financial mar-

kets, traders often use faster access to information about upcoming trades to exploit

arbitrage opportunities (see, e.g., Budish, Cramton, and Shim, 2015; Baldauf and

Mollner, 2022, for extensive evidence). Budish, Cramton, and Shim (2015) propose

batch auctions to limit the adverse effects of such front-running, while we focus on

establishing the link between robust implementation and leakage-freeness.10

6For analysis of repeated games with mediation, in which mediators recommendations leak after
each period, see Ewerhart and Zeng (2025).

7For a recent use of such motivated ex-post equilibrium concepts in mechanism design, see, e.g.,
Zeng (2025).

8Madarász and Pycia (2022) allow the parties to control the news arrival and focus on privacy
considerations, while Madarász and Pycia (2025) study endogenous arrival of news in a wide class
of trading games.

9See, e.g., Harrison and Kreps (1979); Eyster and Piccione (2013); Heidhues, Kőszegi, and Strack
(2018); Jantschgi, Nax, Pradelski, and Pycia (2024) for the analysis of the complementary problem
of how traders with misspecified beliefs behave.

10Information flows between participants matter also in treasury auctions and over-the-counter
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Leakage is also a major issue in online markets and there is an extensive computer

science literature on cryptographic approaches to make auctions robust to information

leakage (Kudo, 1998; Abe and Suzuki, 2002; Parkes, Rabin, Shieber, and Thorpe,

2006).11 Cryptographic methods that allow to shield bids during the auction and to

verify them (or at least their ranking) after the auction have received renewed interest

in decentralized blockchain settings, lately (Blass and Kerschbaum, 2018, 2020; Galal

and Youssef, 2019). We view our analysis as complementary to these approaches,

because we focus on incentives, rather than cryptography, to prevent bidders from

using leaked information.

Another previously studied solution to leakage are candle auctions, in which the

acceptance of bids is uncertain. Gehrlein, Häfner, and Oechssler (2025) show that

a candle auction may implement the efficient and optimal outcome despite leakage,

while Häfner and Stewart (2025) show that candle auctions admit an approximate

ex-post equilibrium in quickly escalating bids.

Finally, auctions are sometimes designed with explicit leakage component in order

to privilege a specific bidder, who has the right-of-first refusal. Such rights are com-

monly seen in the landlord-tenant and competitive procurement settings, see Riley

and Samuelson (1981), Burguet and Perry (2009), Bikhchandani, Lippman, and Ryan

(2002), Choi (2009), and Doran (2018).

2 Example

We give a brief example of the implications of leakage in auctions. Consider a first-

price auction with one object for sale and two bidders i ∈ {1, 2}. Bidders have

independent private values, θi, drawn from the uniform distribution on [0, 1] and

quasi-linear utility.

Without information leakage, we have a standard static auction. The unique

equilibrium, where bidder i follows a bidding strategy βi(θi) is well known to be

symmetric and given by

βi(θi) =
θi
2
, i = 1, 2.

markets; for the discussion of evidence see, e.g., Hortaçsu and Sareen (2004), Hortaçsu and Kastl
(2012), and Garratt, Lee, Martin, and Townsend (2019).

11Leakage of information about actions is related to sniping that is submitting one’s bid as close as
possible to the end-time of the auction (Roth and Ockenfels, 2002). Our analysis of leakage-proofness
might be viewed as addressing the inefficiencies associated with sniping.
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Now, suppose we have information leakage and bidder 2 observes bidder 1’s bid,

which is common knowledge among the bidders. The auctioneer, however, cannot

condition the allocation on a bidder’s identity. To guarantee the existence of best

responses, we assume that the object goes to bidder 2 in case of a tie. This can be

justified because bidder 2 can marginally overbid bidder 1 and win. The equilibrium

strategies can be obtained by backward induction and are as follows.

β1 (θ1) =
θ1
2

and β2 (θ2, b2) =

b1 if θ2 ≥ b1

0 otherwise.

Two observations follow from this example. First, efficiency is violated, because

bidder 2 wins the auction when θ1/2 < θ2 < θ1. Second, compared to the case without

information leakage, the expected revenue is reduced. This is straightforward to see

because the equilibrium strategy for bidder 1 is the same as in an environment without

information leakage, but bidder 2 bids strictly lower conditional on winning. Indeed,

direct computation gives that revenue decreases from 1
3
to 1

6
.

3 Model

3.1 Environment

Players, Outcomes, and Payoffs Throughout, we consider finite games. The

set of players is N = {1, . . . , n}. Player i’s payoff type is θi ∈ θi, where θi is a

finite set. We write θ ∈ ×i∈Nθi ≡ Θ for a payoff type profile. All players have a

common prior ρ (·) on Θ. We assume that for each player i ∈ N , the payoff type

θi is independently drawn from Θi. Hence, ρ(θ) = ρ1(θ1)ρ2(θ2)...ρn(θn), where ρi is

the marginal distribution over θi. The finite set of outcomes is X. Each player has a

von Neumann-Morgenstern utility function ui : X ×Θ → R. The payoff structure is

fixed, and it is common knowledge.

Extensive Form The designer can choose an extensive form. We restrict attention

to extensive-form games with perfect recall, which allow simultaneous moves but

otherwise have perfect information. While this restriction simplifies our exposition

and terminology, it can be fully relaxed: as mentioned in the introduction, all our
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insights remain true for general imperfect-information games.12 Formally, we consider

multistage games with observed actions, G, where

G =
{
H,⊂, P, (Ai)i∈N , g

}
.

The elements of G are defined as follows and summarized in Table 1.

1. H is a finite set of sequences, consisting of the public histories of moves before

each stage k = 1, 2, . . . .

(a) The history before first stage, h0, is equal to the empty sequence h∅ ∈ H.

(b) The history before stage k ≥ 2 is a sequence of length k − 1, denoted as

hk−1 =
(
a1, a2, . . . , ak−1

)
∈ H. Each vector at = (at1, ..., a

t
n) consists of the

actions ati taken by player i at stage t, where some, but not all, actions ati

may be ∅.

(c) If hk =
(
a1, a2, . . . , ak

)
∈ H, then hl =

(
a1, a2, . . . , aℓ

)
∈ H for any ℓ < k.

We also say that hk is a successor of hℓ, which is denoted by hℓ ⊂ hk.

2. The game terminates at the end of a stage k with hk =
(
a1, a2, . . . , ak

)
∈ H if

there is no ak+1 such that hk∥ak+1 ∈ H, where ∥ is the concatenation operator.

The set of terminal histories is denoted by Z.

3. The player function P : H \ Z → 2N assigns to each nonterminal history

hk−1 ∈ H \ Z, a set of players P
(
hk−1

)
who simultaneously take actions at

stage k.

4. H and P jointly satisfy the condition that for each nonterminal history hk−1 ∈
H \Z, there is a set of feasible actions Ai

(
hk−1

)
for each player i ∈ N at stage

k such that

(a) Ai

(
hk−1

)
= ∅ for i /∈ P

(
hk−1

)
and |Ai

(
hk−1

)
| ≥ 2 for i ∈ P

(
hk−1

)
.

(b)
{
ak : hk−1∥ak ∈ H

}
= ×i∈NAi

(
hk−1

)
.

5. The outcome resulting from any terminal history z ∈ Z is denoted by g (z) ∈ X.

12All of our arguments extend to the general case, and, furthermore, our results directly imply
the analogous results for the general imperfect-information case. Indeed, we study mechanisms that
perform well in the presence of leakage and in general imperfect information games leakage might
reveal to every player the history of past play.
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Table 1: Notation

Name Notation

Histories before each stage k = 1, 2, · · · hk−1 ∈ H

Precedence relation over histories ⊂
Set of players whose actions are considered at hk−1 P

(
hk−1

)
Actions available at hk−1 for player i Ai

(
hk−1

)
Terminal histories z ∈ Z

Outcomes resulting from z g (z)

In short, the game evolves over a finite number of stages k = 1, 2, .... At the start

of each stage k = 1, 2, . . . , given the history hk−1 ∈ H, the game G selects a set of

players P
(
hk−1

)
who move simultaneously at stage k. Each active player i ∈ P

(
hk−1

)
takes an action aki ∈ Ai

(
hk−1

)
. The resulting action profile ak = (ak1, ..., a

k
n), where a

k
i

= ∅ for i /∈ P
(
hk−1

)
, determines the updated history at the start of stage k + 1, i.e.

hk = hk−1∥ak. This process continues until a terminal history is reached, determining

the outcome of the game. At the start of each stage k = 1, 2, ..., the histories hk−1 ∈ H

are publicly disclosed. Consequently, every player is perfectly informed of all actions

previously taken by others, and we refer to H as the set of public histories.

Information Leakage In addition to the standard setup above, we assume uncon-

tractible information leakage between players about the simultaneous actions taken

within a stage. The main idea, loosely speaking, is that some players “see” the con-

current actions of the other active players. Yet, the designer cannot discriminate

players based on who sees whom, because leakages are not verifiable.

Formally, we define a binary leakage order ≾ on the set of players N . The order

is complete and transitive. We write i ≾ j iff (i, j) ∈≾, we write i ∼ j iff i ≾ j

and j ≾ i, and we write i ≺ j iff i ≾ j is true but i ∼ j is not. The interpretation

of this order is that if, for two players i and j, it holds i ≺ j, then j can observe

i’s concurrent actions whenever they are both asked to move at a stage, but not the

other way round. We refer to player j as being faster than i (or, equivalently, i being

slower than j). That is, information leaks from slow players to fast players. If for

two players i and j it holds that i ∼ j, then we say they are equally fast. In that

case, players i and j cannot see each other’s actions. For further reference, we let L
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denote the set of all leakage orders on the set N .

With information leakage, the players’ information during the game differs. At

stage k given the public history hk−1 ∈ H, player i under the leakage order ≾ has a

private history,

hk−1
i = hk−1∥

{
akj
}
j≺i

,

where akj ∈ Aj

(
hk−1

)
. The private history consists of both the public history and the

leaked information.

We extend the precedence relation over public histories to private histories. At

each stage k, player i’s private history succeeds the public history of the current stage

and precedes the public history of the next stage, i.e. hk−1 ⊆ hk−1
i ⊆ hk. In particular,

when player i is (weakly) slower than any other player, their private history coincides

with the public history, i.e., hk−1 = hk−1
i .

Leakage-Order Beliefs To finish, we need to specify the players’ leakage order

beliefs. We require beliefs to be consistent with the actual leakage order, but we

allow for beliefs that are inconsistent with those of other players.

To formalize this, let ≾ be the actual leakage order and define Ei(≾) ⊆ L as

the set of leakage orders that are consistent with ≾ from the viewpoint of player

i. Consistency here means that Ei(≾) contains precisely those leakage orders under

which i observes the same players’ actions as under ≾ (but not necessarily in the

same order). Formally,

Definition 1 (The Set of Consistent Leakage Orders, Ei(≾)). For a given leakage

order ≾ and a player i, the set of consistent leakage orders, Ei(≾), is given by

Ei(≾) = {≾′∈ L : j ≺ i ⇐⇒ j ≺′ i, ∀j} .

We say that a player i is of leakage type ti from some finite set of possible leakage

types Ti. We write T = T1 × ... × Tn for the set of all possible type profiles t =

(t1, ..., tn). We work with leakage beliefs that can be captured by the classical notion

of a type space, T = {T, (τ1, ..., τn)} with τi : Ti → ∆(L, T−i) for all i, where τi

can be iteratively used to construct a player’s first-order belief about L and their

respective higher-order beliefs (e.g. Siniscalchi, 2008). Each player i of type ti has a

prior γ−i(.) = margT−i
τi(ti)(.) on the types of others, T−i, where margZ denotes the

marginal distribution over Z.
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We make two substantive assumptions on any feasible type space T . The first

formalizes the idea that first-order beliefs must be consistent. Writing supp(.) for the

support of the distribution given in the argument, we have:

Assumption 1 (Consistency of First-Order Beliefs). Suppose the leakage order is

≾∈ L. For every ti ∈ Ti, it holds that supp (margL τi(ti)) ⊆ Ei(≾).

While all types in a feasible leakage type space must hold consistent first-order

beliefs, we allow players to hold wrong higher-order beliefs. The following example

illustrates what we have in mind.

Example 1. Let ≾ be the actual order, let L1 = {i ∈ N : i ≾ j, ∀j ∈ N} be the set

of the slowest players and define the set of the k-th slowest players recursively as

Lk = {i ∈ N : i ≾ j,∀j ∈ N \ (Lk−1 ∪ ... ∪ L1)}. Let k̄ be the fastest group of players

in N ; i.e. k̄ is the lowest k for which ∪κ≤kLκ = N . Suppose there are ≾1, ...,≾k̄ with

≾k̄=≾ such that:

(B1) Players in L1 believe it is common knowledge among all players in Lk̄ ∪ ...∪L1

that ≾1 is true, where ≾1∈ Ej(≾), ∀j ∈ S1.

(B2) Players in L2 believe it is common knowledge among all players in Lk̄ ∪ ...∪L2

that both (B1) and ≾2 are true, where ≾2∈ Ej(≾), ∀j ∈ S2.

(B3) Players in L3 believe it is common knowledge among all players in Lk̄ ∪ ...∪L3

that both (B1)–(B2) and ≾3 are true, where ≾3∈ Ej(≾), ∀j ∈ S3.

...

(Bk̄) Players in Lk̄ believe it is common knowledge among all players in Lk̄ that both

(B1)–(Bk̄−1) and ≾k̄ are true.

Under the leakage types described in Example 1, the players in the fastest group

know the true leakage order, ≾. Players in any group are aware of the leakage types

of the slower players. Players in slower groups may have a common belief that differs

from the beliefs of players in a faster group and wrongly attribute this belief to the

faster players. When ≾1= ... =≾k̄, then we have common knowledge about the

leakage order among all players.

In general, beliefs about the slower players’ beliefs need not be correct, nor need

they be the same for players that are equally fast for our results to hold. Furthermore,
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beliefs can be probabilistic. We assume, however, that the leakage type space contains

leakage type profiles of at least two variants that we call the zero-profile and one-

profile, respectively.

Definition 2 (Zero-Profile and One-Profile).

1. The zero-profile t0 = (t01, ..., t
0
n) is a leakage type profile, where t0i corresponds to

the belief: It is common knowledge that everyone is equally fast.

2. A one-profile is any of the n permutations of the leakage type profile

(t01, ..., t
0
i−1, t

1
i , t

0
i+1...., t

0
n),

where t0i is as above and t1i corresponds to the belief: I am faster than everyone

else, who all believe it is common knowledge that everyone is equally fast.

Assumption 2 (Minimally Rich Type Space). Any feasible type space T contains

the zero-profile and all permutations of the one-profile.

The leakage order in which everyone is equally fast is the unique order that is

consistent with the zero-profile. Moreover, leakage orders in which exactly one player

is faster than all other players (who are equally fast) are uniquely consistent with

a one-profile. In other words, we consider situations with at least n + 1 leakage

orders: everyone is equally fast, and one of the n players is faster than the other

n− 1 players. Assumption 2 is crucial for establishing the necessity of a mechanism’s

leakage-proofness in various contexts, as we discuss after the results below.13

3.2 Equilibrium

The primary object of our interest is the leakage environment Γ, comprising the

multistage game G (which the designer can control) together with a leakage type

space T (which the designer cannot control),

Γ = (G, T ) .

A strategy Si(θi, ti)(h
k−1
i ) for player i maps, for every private history hk−1

i , the

type (θi, ti) into a probability distribution over the set of available actions Ai

(
hk−1

)
,

13We further discuss how our setup relates to the special case of common knowledge about the
leakage order in Section B.
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which depends on the public history hk−1 preceding the private history hk−1
i . That

is, Si(θi, ti)(h
k−1
i ) ∈ ∆Ai

(
hk−1

)
, where hk−1 ⊆ hk−1

i . For a fixed leakage type ti, we

denote the set of available strategies Si(., ti) by
∑

i(ti). The set of private histories is

denoted by Hi(ti).

The belief of player i after private history hk−1
i is denoted by

µi

(
hk−1
i , ti

)
∈ ∆(Θ−i, T−i) ,

which is a probability distribution over the value types of the opponents, Θ−i, and

the leakage types of the opponents, T−i. Beliefs depend on the private history hk−1
i

and the particular leakage type ti determining how the player interprets the observed

history. The belief at the beginning of the game is µi (h∅, ti) =
∏

j ̸=i ρj(θj)×γ−i(T−i).

We collect the profile of conditional beliefs in µ = (µi)i∈N .

To define utilities, let σ = (σi)i∈N denote a profile of contingent action plans for

each player, σi(h
k−1
i ) ∈ ∆Ai(h

k−1), prescribing the distribution over available actions

after any private history hk−1
i . Given such a profile σ, let ζ(σ) denote the probability

distribution over the terminal histories Z in the game G. The expected utility of

player i under such a profile σ is

Ui (σ, θ) ≡
∑
z∈Z

ui (z, θ) ζ(σ)(z).

Our equilibrium concept is standard PBE (Fudenberg and Tirole, 1991), requiring

that player i responds optimally to what they expect the other players to play, given

their beliefs about payoff and leakage types. Whenever possible (in particular, if ti

is such that hk−1
i appears on the path of play given an opponent strategy profile

(Sj(., .))j ̸=i and the corresponding beliefs about payoff and leakage types), player i

updates their beliefs according to Bayes’ rule. Off the path of play, we allow for

arbitrary beliefs.

Definition 3 (Equilibrium). A strategy-belief profile (S, µ) is a perfect Bayesian equi-

librium (PBE) in the environment Γ = (G, T ), if the following conditions are satisfied.

1. Sequential rationality with information leakage: For all players i ∈ N , all types

(θi, ti) ∈ Θi × Ti, all stages k, and all histories hk−1
i ∈ Hi (ti),

Si(θi, ti) ∈ arg max
σi∈Σi(ti)

Eµi

[
Ui (σi, (Sj(θj, tj))j ̸=i, θi, θ−i)

∣∣hk−1
i , ti

]
13



2. Bayesian updating whenever possible: If possible for player i having leakage

type ti µi

(
hk−1
i , ti

)
(θ−i, t−i) is updated according to Bayes’ rule at stage k and

private history hk−1
i .

3.3 Leakage-Proof Equilibrium

We say that the game G is the default game. G is a standard finite extensive form

game, for which we know a PBE to always exist (Selten, 1975). We call this PBE the

default PBE and denote it by (S0, µ0). Further, we refer to (G,S0, µ0) as the default

mechanism.

In all our results we assume that the game G is pruned (Akbarpour and Li, 2020)

with respect to the default strategy profile. Pruning the game in such a way removes

all histories that cannot be reached under any payoff type profile in the equilibrium

S0 and all stages in which just one bidder can move.14 Formally,

Assumption 3 (Pruned Game G). The game G is pruned with respect to the default

strategy profile S0, if, for each history h ∈ H, there exists some payoff type profile θ

such that h is on the path of play of some realization of
(
S0
j (θj)

)
j∈N .

Working with pruned games is standard, as it allows to focus on relevant histories.

Indeed, when the game is pruned in accordance with Assumption 3, then the only off-

path histories that remain relevant are those in which some players have mimicked a

value type with different equilibrium actions in the past. These histories are off-path

only for the deviating player; for the other players, they appear on path.

Our goal is to characterize mechanisms that are robust to information leakage —

ensuring that no player has an incentive to deviate from the default strategy profile

S0 based on leaked information about others’ actions.

Definition 4 (Leakage-Proof Equilibrium). A strategy-belief profile (S0, µ0) is a

leakage-proof equilibrium in the game G if, for each admissable leakage type space

T , the environment Γ = (G, T ) admits a PBE (S, µ) such that for all payoff type

profiles θ ∈ Θ and leakage type profiles t ∈ T , all players i ∈ N , and all private

histories hk−1
i ∈ Hi (ti), where hk−1

i is on the path of play of S0,

Si(θi, ti)(h
k−1
i ) = S0

i (θi)(h
k−1).

14We discuss unpruned games in Section B.
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We also say that (G,S0, µ0) is a leakage-proof mechanism.

Leakage-proofness entails that, for all beliefs (and higher order beliefs) regarding

leakage orders, it is optimal for players to continue following the default equilibrium

strategies if they have done so in the past.15 In other words, players’ best responses

disregard any leaked information, treating the game as if there were none.

4 Leakage Proofness and Implementation

We begin by showing that leakage-proofness is an essential requirement for imple-

mentation of a mechanism in the presence of leakages. Suppose that the designer’s

goal is to implement a social choice function f , which maps from payoff type profiles

to outcomes, i.e. f : Θ → X.

Definition 5 (Partial Implementation under Leakages). The game G implements a

social choice function f , if for each feasible leakage type space T , the environment

Γ = (G, T ) admits a PBE (S, µ) yielding outcome f(θ) for all payoff type profiles

θ ∈ Θ and all leakage type profiles t ∈ T .

Definition 5 adapts the standard definition of partial implementation (Dasgupta

et al., 1979b) to our environment with information leakage. It is equivalent to partial

implementation in the absence of leakages, i.e., when the type space T only consists

of the zero-profile (as in Definition 2). In the presence of information leakage, we

require partial implementation to hold across all possible leakage type spaces and

particular leakage type profiles.

The following is the main result of this section. It establishes that if the game G

implements a social choice function despite information leakage, then G is part of a

leakage-proof mechanism, and vice versa.

Theorem 1 (Implementability under Leakages). The game G implements a social

choice function f if and only if the game G admits a leakage-proof equilibrium that

implements f .

15By imposing leakage-proofness only on the default equilibrium path-of-play, we follow the tra-
dition in the literature on the extensive-form games of imposing additional equilibrium restrictions
only on path, e.g. Pearce (1984), Shimoji and Watson (1998), Li (2017), and Pycia and Troyan
(2023).
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The “if” direction follows immediately from the definition of a leakage-proof equi-

librium (Definition 4). To prove the converse, we invoke Assumption 2 of a minimally

rich type space, together with the premise that the choice function f(θ) is imple-

mented for any feasible type space T and leakage type profile t ∈ T .

The key observation is that these two ingredients imply the following: when all

other players follow their default strategies, even a player who is uniquely the fastest

cannot obtain a higher payoff than by playing the uninformed player’s strategy. Since

this uninformed strategy coincides with the default strategy, it follows that the default

strategy is a best response when everyone else plays it.

5 Information Leakage in Auctions

We now apply the methods developed for general mechanisms to auctions.

5.1 Setup

Throughout, we consider auctions with a single, indivisible good for sale. We will

refer to the players as bidders. The seller is denoted as bidder 0. An outcome

x = (q,m) ∈ X now consists of a vector of allocations q = (q1, . . . , qn) ∈ [0, 1]n,

where qi denotes the probability that the good is allocated to bidder i and we have∑n
i=1 qi ∈ [0, 1], and a profile of payments m = (m1, . . . ,mn) ∈ Rn, where mi denotes

the payment of bidder i to the seller.

The payoff type of bidder i ∈ N , θi, corresponds to a nonnegative real number,

representing her valuation for the good on sale. The payoff of bidder i is given by

ui (x, θ) = qiθi −mi.

For simplicity, we assume that the seller derives no value from the object, θ0 = 0.

Hence, the seller’s payoff is given by

u0 (x, θ) =
∑
i∈N

mi.

For further reference, we write the value type sets as Θi = {θi1, ..., θim̄i
} where

θim+1 > θim for all m = 1, ..., m̄i − 1 and m̄i is the number of value types for bidder
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i, m̄i = |Θi|. We assume equally spaced value types; i.e., there is δ > 0 such that

θim+1 − θim = δ

for all players i ∈ N and all m = 1, ..., m̄i − 1.

In the environment Γ = (G, T ), a strategy-belief profile (S, µ) induces, for every

value and leakage type profile (θ, t), a potentially random allocation and a poten-

tially random payment, whose realizations we denote by q (θ, t) = (qi (θ, t))i∈N and

m (θ, t) = (mi (θ, t))i∈N respectively. For any stage k and history hk−1
i that is on

the path of play of S, we then denote the subjective interim expected allocation and

payment for bidder i of leakage type ti choosing the continuation action plan of a

type (θ̂i, t̂i) as

Qi

(
θ̂i, t̂i, ti, h

k
i

)
= Eµi

[
qi

(
(θ̂i, θ−i), (t̂i, t−i)

) ∣∣hk−1
i , ti

]
Mi

(
θ̂i, t̂i, ti, h

k
i

)
= Eµi

[
mi

(
(θ̂i, θ−i), (t̂i, t−i)

) ∣∣hk−1
i , ti

]
.

Together, these quantities allow us to succinctly express the bidders’ interim ex-

pected utilities. Again, fix a strategy profile S. Then, in every stage k and for every

on-path history hk−1
i , bidder i of type (θi, ti) has an expected payoff equal to

Eµi

[
Ui (Si(θi, ti), (Sj(θj, tj))j ̸=i, θi, θ−i)

∣∣hk−1
i , ti

]
= θiQi(θi, ti, ti, h

k
i )−Mi(θi, ti, ti, h

k
i ).

The discrete type space necessitates that we work with approximate, rather than

strict equilibria. Specifically, we define a Perfect Bayesian ϵ-equilibrium as follows.

Definition 6 (ϵ-Equilibrium). A strategy-belief profile (S, µ) is a perfect Bayesian

ϵ-equilibrium (ϵ-PBE) in the environment Γ = (G, T ), if the following conditions are

satisfied.

1. Sequential rationality with information leakage: For all players i ∈ N , all types

(θi, ti) ∈ Θi × Ti, all stages k, and all histories hk−1
i ∈ Hi (ti),

Eµi

[
Ui (Si(θi, ti), (Sj(θj, tj))j ̸=i, θi, θ−i)

∣∣hk−1
i , ti

]
+ ϵ

≥ Eµi

[
Ui (σi, (Sj(θj, tj))j ̸=i, θi, θ−i)

∣∣hk−1
i , ti

]
, ∀σi ∈ Σi(ti).
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2. Bayesian updating whenever possible: If possible for player i having leakage

type ti µi

(
hk−1
i , ti

)
(θ−i, t−i) is updated according to Bayes’ rule at stage k and

private history hk−1
i .

For the rest of this section, we make two assumptions about the auction mecha-

nisms that we consider. First, we assume that the auctions are anonymous, meaning

that the allocations and payments must be invariant under permutations.

Assumption 4 (Anonymous Auctions). For every permutation φ : N → N , it holds

qi(θ, t) = qφ(i)((θφ(1), ..., θφ(n))), ((tφ(1), ..., tφ(n)))

mi(θ, t) = mφ(i)((θφ(1), ..., θφ(n))), ((tφ(1), ..., tφ(n))).

Second, at every stage and feasible history, the lowest type of any player that is

still in the auction dissipates all potential rent from obtaining the good, irrespective

of the actual and pretended leakage type. Formally,

Assumption 5 (No Rent to the Lowest Type). For any player i and leakage type ti,

stage k and on-path history hk
i , it holds

Eµi

[
Ui

(
Si(θi, t̂i), (Sj(θj, tj))j ̸=i, θi, θ−i

) ∣∣hk−1
i , ti

]
= 0,∀t̂i,

where θi is the lowest value type θi ∈ Θi for which Qi(θi, ti, ti, h
k−1
i ) > 0.

5.2 Efficient Auctions under Leakages

Because we assume the seller’s valuation is zero, efficiency requires that the good be

allocated to the bidder with the highest valuation. We say that an auction is efficient

under leakages if it has a PBE that yields an efficient allocation for every leakage-type

profile in any leakage-type space. Formally,

Definition 7 (Efficiency under Leakage). The auction G is efficient under leakage if

for each leakage type space T , the environment Γ = (G, T ) admits a PBE (S, µ) that

is efficient for all payoff type profiles θ ∈ Θ and all leakage type profiles t ∈ T .

From our anonymity assumption (Assumption 4), it follows that ties between equal

types need to be resolved uniformly and, hence, that any efficient auction satisfies a

property that we call allocation invariance under leakages.
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Definition 8 (Allocation Invariance under Leakage). The auction mechanism (Γ, S, µ)

satisfies allocation invariance under leakage if there is an allocation (q1(θ), . . . , qn(θ))

such that, for all type spaces T , the mechanism implements (q1(θ), . . . , qn(θ)) for all

t ∈ T .

The following lemma outlines two properties of mechanisms that satisfy allocation

invariance under leakage. These two properties will be instrumental for the main

result of this section.

Lemma 1 (Increasing Allocation and Payoff Bounds). Take an auction mechanism

(Γ, S, µ) and suppose it satisfies the allocation-invariance-under-leakage property. Fix

a player i ∈ N , a stage k, and a private on-path history hk−1
i .

1. Then, Qi(θis, ti, ti, h
k−1
i ) is non-decreasing in θis on the set of value types {θi ∈

Θi : Qi(θi, ti, ti, h
k−1
i ) > 0}.

2. Further, let m be such that θim = θi and let m be such that θim = θi, where θi

is the lowest value type θ̂i ∈ Θi for which Qi(θ̂i, ti, ti, h
k−1
i ) > 0. Then, it holds,

for all feasible types t̂i at h
k−1
i who believe to be weakly slower, that

m∑
s=m+1

(θis − θis−1)Qi(θis−1, ti, ti, h
k−1
i )

≤ Eµi

[
Ui

(
Si(θi, t̂i), (Sj(θj, tj))j ̸=i, θi, θ−i

) ∣∣hk−1
i , ti

]
≤

m∑
s=m+1

(θis − θis−1)Qi(θis, ti, ti, h
k−1
i ). (1)

The proof of Lemma 1 first follows standard arguments for discrete value types to

show that the interim allocation is increasing at every stage and derive bounds on the

payoffs (see Lovejoy, 2006; Bergemann and Pesendorfer, 2007, for static games). The

specific payoff bounds for bidders mimicking a slower bidder in (1) are then obtained

by using the allocation-invariance-under-leakage property.

The following result is the main result of this section. To establish it, we use the

payoff bounds from Lemma 1 together with our assumption of equally spaced value

type spaces Θi, which allows us to tightly bound the deviation payoffs for a player

following their default strategies when the others do so as well. The strategy of the

proof is otherwise similar to that in Theorem 1.
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Theorem 2 (Efficiency under Leakages). Suppose the auction G is efficient under

leakages. Then, G admits a leakage-proof ϵ-PBE with ϵ = 2δ that always results in

an efficient outcome.

5.3 Revenue-Maximizing Auctions under Leakages

We now turn to revenue-maximizing auctions. Throughout, we assume that virtual

values are increasing.16 Recall ρi(θi) is the common prior belief about bidder i’s value

type θi. Then,

Assumption 6 (Increasing Virtual Values). For every bidder i ∈ N , it holds that

the virtual value,

vis = θis − (θis+1 − θis)
1−

∑s
m=1 ρi(θim)

ρi(θis)
,

increases in s.

For an auction (G,S, µ), the seller’s revenue for a specific type profile t is

Π(G,S, µ, t) = Eρ

[∑
i∈N

mi(θ, t)

]
.

It is tempting to require, akin to efficiency, that revenue maximization holds across

all feasible leakage type profiles; i.e., an auction is revenue-maximizing for all possible

leakage types t. However, other than for efficiency, such a robustness requirement is

potentially problematic.

To illustrate this, consider the following example of a first-price auction with an

optimal reserve price and two bidders who have leakage types that we call paranoid.

Both believe that they are slower than the other bidder, which, under the particular

type distribution assumed, leads them to bid more aggressively than in the default

auction, thus raising revenue above the Myersonian upper bound for regular auctions.

Example 2 (Paranoid Bidders in a First-Price Auction). Consider a first-price auc-

tion with a single object for sale and two bidders i ∈ {1, 2}. Bidders have independent
private values, θi, drawn from the Pareto distribution F (θi) = 1 − (θi + 1/2)−2 on

16For an analysis of auctions without leakage that allows general distributions and does not require
monotonic virtual values, see Jeong and Pycia (2025).
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[1/2,+∞) and quasi-linear utility. The Myersonian optimal reserve price is r∗ = 1
2
.

Without information leakage, the symmetric equilibrium bidding strategy is given by

βi(θi) = θi −
∫ θi
r∗
F (x)dx

F (θi)
= θi −

(θi + 1/2)(θi − 1/2)

θi + 3/2
=

6θi + 1

4θi + 6
.

Now, suppose both bidders are paranoid; i.e., they both believe the other bidder to be

faster. The optimization problem for paranoid bidder i is

max
b

Ui(θi, b) = (θi − b)F (b).

We denote the maximizer of this problem as b∗i (θi). The first derivative of Ui with

respect to b is given by

∂Ui(θi, b)

∂b
=

2(θi − b)

(1/2 + b)3
−
(
1− 1

(1/2 + b)2

)
≡ g(b),

and the second derivative is readily verified to be smaller than 0 when b < θi.

The maximizer b∗(θi) satisfies the FOC, i.e., g(b∗i (θi)) = 0. To show that b∗i (θi) >

βi(θi) for all θi > 1/2, we only need to check that g(βi(θi)) > 0 for all θi > 1/2.

Indeed,

(1/2 + βi(θi))
3 × g(βi(θi))

=2(θi − βi(θi))− (βi(θi)− 1/2)(βi(θi) + 3/2)(βi(θi) + 1/2)

=
(2θi + 1)(2θi − 1)

2θi + 3
− 2θi − 1

2θi + 3

6θi + 5

2θi + 3

4θi + 2

2θi + 3

=
(4θ2i − 1)3

(2θi + 3)2
> 0

Hence, paranoid bidders bid strictly higher than they would bid in the absence of

information leakage. This first-price auction with paranoid bidders generates revenue

strictly higher than the Myersonian optimal revenue.17

On the other hand, if one player believes both players to be equally fast, while the

other believes to be faster than the opponent and the opponent to believe everyone is

17Having paranoid bidders could also backfire in a first-price auction. For example, if θi is drawn
from the uniform distribution F (θi) = θi on [0, 1] then, with paranoid bidders, the optimal reserve
price is

√
3/3 and the expected revenue is 2

√
3/9, which is strictly lower than the Myersonian

no-leakage optimal revenue of 5/12.
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equally fast (the one-profile), revenue is below the Myersonian upper bound. But this

implies that we cannot rank the first-price auction against the second-price auction,

which is leakage-proof and thus always yields the Myersonian upper bound.

Nevertheless, we conclude this section with a positive result: For common priors

regarding the leakage order, the static second-price auction is revenue-maximizing.

Specifically, let γ : T → [0, 1] be the common prior distribution over types in T for a

given type T (shared by the bidders and the seller).

Definition 9 (Revenue Maximization under a Common Prior). Fix a leakage type

space T . Auction (G,S, µ) maximizes revenue under leakages if

Eγ [Π(G,S, µ, t)] ≥ Eγ [Π((Γ
′, T ), S ′, µ′, t)] ,

for all auctions ((Γ′, T ), S ′, µ′).

Lemma 2 (Allocation in the Revenue-Maximizing Auction under a Common Prior).

In the revenue-maximizing auction under a common prior, the allocation satisfies

invariance under leakage and is as follows: Suppose bidder i with value θis ∈ Θi has

the highest virtual value vis among all bidders. If vis ≥ 0, allocate the good to bidder

i; if vis < 0, do not allocate the good to anyone. If multiple bidders have the highest

virtual value, randomize uniformly among them.

The proof leverages standard arguments from Myerson (1981) to our setup. The

allocation described in Lemma 2 corresponds to that in the second-price auction

with an optimal reserve price when leakages are absent. Because the corresponding

equilibrium in the second-price auction is in dominant strategies, the second-prize

auction is automatically leakage-proof: a dominant strategy remains optimal even

after observing any actions of other bidders. We may thus conclude:

Proposition 1 (Revenue-Maximization under Common Priors). With a common

prior, the second-prize auction with an optimal reserve prize maximizes revenue under

leakages.

6 Discussion

In this section, we first discuss the leakage-proofness (or lack thereof) of standard

auction formats. Then, we explore the relationship between our leakage-proofness
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concept and ex-post incentive compatibility.

6.1 Leakage-Proofness and Standard Auctions

As observed above, if an auction admits a dominant-strategy equilibrium, then it is

automatically leakage-proof: a dominant strategy remains optimal even after observ-

ing any actions of other bidders. This not only applies to the static second-price

auction but also to the English (button) auction, where everyone remains active until

the price reaches one’s value.

Strategy-proofness clearly fails in the static first-price auction, and so does leakage-

proofness. Under the standard assumption of continuously distributed valuations, the

unique equilibrium without leakage features strictly increasing continuous bidding

strategies (Lebrun, 1996; Maskin and Riley, 2003). Now suppose bidder i has the

highest valuation, and all other bidders play their equilibrium strategies. Consider

a one-profile where i observes the highest bid and knows they are the fastest (while

others believe speeds are symmetric). Bidder i can then profitably bid just above the

observed maximum bid, strictly improving upon their no-leakage equilibrium payoff.

In other words, player i has a profitable deviation, showing that leakage-proofness

fails.

The Dutch auction is likewise not leakage-proof. Under our anonymity assump-

tion, tie-breaking is uniform. This creates incentives for fast bidders to wait slightly

longer, as the risk of delaying is partly offset by information leakage. Conversely, slow

bidders would optimally accept the price earlier to avoid revealing their bids to faster

bidders.

A further observation is that, unlike the second-price and English auctions—which

remain strategically equivalent under information leakage—the static first-price and

Dutch auctions do not. In the first-price auction, a bidder who can uniquely exploit

leaked information will bid just above the highest observed bid if their valuation is

higher, guaranteeing a win. In the Dutch auction, such a strategy is impossible: once

bidder i observes another bidder accept the price, their best response is to accept as

well and hope to win the tie. Although the conditional payment is essentially the

same as in the first-price auction, bidder i now wins with probability at most one

half.18

18The only tie-breaking rule under which the two formats would be equivalent is one that always
awards the good to the fastest tying bidder. This is excluded by our anonymity assumption, which
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Finally, note that the Dutch auction can be made leakage-proof by adjusting the

tie-breaking rule. Fast bidders can benefit from leaked information only by tying with

slower bidders. Thus, the simplest way to neutralize such leakages is to ensure that

fast bidders never win in a tie. Under anonymity, the only way to achieve this is to

not allocate the good at all in the event of a tie.19

6.2 Leakage-Proofness and Ex-Post Incentive Compatibility

Leakage-proofness requires that a player’s incentives are independent of the simul-

taneous actions of others, making it reminiscent of ex-post incentive compatibility

(EPIC). However, as we will see in this section, neither concept implies the other in

general. In particular, an EPIC mechanism is leakage-proof if equilibrium play is in

pure strategies, but not necessarily under mixed strategies. Conversely, a leakage-

proof mechanism is EPIC if it is static, but not if it is dynamic.

We begin with the standard definition of an ex-post incentive-compatible mech-

anism. The definition is for a mechanism (Γ, S, µ) without information leakage; i.e.,

for strategies Si(θi) that only depend on the value type θi.

Definition 10 (EPIC mechanism). A mechanism (Γ, S, µ) is an ex-post incentive

compatible (EPIC) mechanism if the strategy profile S is ex-post incentive compatible:

For each player i ∈ N and each payoff type profile θ ∈ Θ, we have

Ui

(
Si (θi) , (Sj (θj))j ̸=i , θ

)
≥ Ui

(
σi, (Sj (θj))j ̸=i , θ

)
. (2)

for any σi ∈ Σi(t
0
i ). If S is a pure-strategy profile, we call (Γ, S, µ) a pure-strategy

EPIC mechanism.

Our first result establishes that any pure strategy EPIC mechanism is leakage-

proof. The central insight used in the proof is that the ex-post property, stated above

for the beginning of the game, holds at any stage and after any on-path history,

which allows leakage-proofness to be inferred immediately. For mixed strategies, the

implication does not hold, as we show with an example following the statement.

Proposition 2. Any pure-strategy EPIC mechanism is leakage-proof. Mixed-strategy

EPIC mechanisms are not, in general, leakage-proof.

prevents the mechanism from conditioning on the leakage order.
19Gans and Holden (2022) propose a closely related idea in a different context.
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The reason mixed-strategy EPIC mechanisms may not be leakage-proof is that

observing the realized actions in mixed strategies provides more information than

knowing the player’s payoff type. For example, consider the classic zero-sum game,

matching pennies.20

Heads Tails

Heads +1,-1 -1,+1

Tails -1,+1 +1,-1

The matching pennies game has a unique mixed-strategy Nash equilibrium in

which each player plays each action with probability 1/2. The expected payoff for

both players is zero. The equilibrium is ex post incentive-compatible because of the

degenerate type space. However, it is not leakage-proof. A player who can observe

the action of the other one will always win and have a payoff of one.

Regarding the other direction, we also have that leakage-proofness implies EPIC

in specific mechanisms but not in others. Here, the relevant distinction is between

static and dynamic mechanisms, where a mechanism is static if it has only one stage.

Proposition 3. Any static leakage-proof mechanism is an EPIC mechanism. Dy-

namic leakage-proof mechanisms are not, in general, EPIC.

The proof for the positive claim is in the appendix. To see the negative claim

in Proposition 3, recall the Dutch auction with no allocation in case of a tie, which

we discussed in Section 6.1 above. This auction is leakage-proof, but it is clearly not

EPIC. If you know the other players’ types, then you know at what price they would

take the good. So, if you are the highest-valuing bidder, you can always increase your

payoff by waiting and snatching the good from the second-highest bidder just before

they take it.

7 Concluding Remarks

There are many modern market environments in which a mechanism designer has

limited control over information leakage between participants — that is, over which

actions of others a player may observe when making a decision. Examples include

20Although we present the argument with a static game of complete information, the general idea
extends to dynamic games of incomplete information.
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financial markets, online platforms, and blockchain-based markets. In this paper, we

study the implications of such leakages for mechanism design.

Our contributions are threefold. First, we introduce an analytical framework

for studying information leakage. The central objective is to design mechanisms

that are leakage-proof, meaning that equilibrium outcomes remain invariant to any

(consistent) beliefs about the leakage structure. Second, we apply this robustness

notion to a general implementation problem and to the specific cases of efficient and

revenue-maximizing auctions. In both settings, we show that leakage-proofness is

the critical property: if a mechanism is to remain implementable — or an auction

efficient or optimal — under potential leakage, then it must be leakage-proof (and

conversely in the case of implementation). Finally, we construct a leakage-proof Dutch

auction and show that leakage-proofness is an independent property of mechanisms.

We further clarify in what sense it is orthogonal to the seemingly related concept of

ex-post incentive compatibility.

A Proofs

A.1 Proofs for Section 4

Proof of Theorem 1. The if part from our definition of a leakage-proof equilibrium

(Definition 3). For the only-if part, let t0 = (t01, ..., t
0
n) denote a profile of leakage

types where everyone believes it is common knowledge that everyone is equally fast

(the zero profile; cf. Definition 2) and let t1 = (t01, ..., t
0
i−1, t

1
i , t

0
i+1...., t

0
n) denote a

generic one profile, corresponding to the leakage order where one player is faster than

all the others who are equally fast (again, cf. Definition 2). We will be explicit about

which player is fastest below.

Fix any type space T . Because the game G implements the social choice function

f , the environment Γ = (G, T ) admits a PBE (S∗, µ∗) with outcome f(θ) for all

θ ∈ Θ and t ∈ T . The equilibrium (S∗, µ∗) allows us to determine equilibrium play

in the default game G, which we call the default strategies. Observe that the private

histories of the any player i under the zero-leakage type profile t0 are identical to

public histories, i.e. hk−1 = hk−1
i . Hence, for all players i ∈ N , all payoff types θi ∈ θi,
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and all histories h ∈ H, we may define

S0
i (θi)(h) = S∗

i (θi, t
0
i )(h).

For the following, let µd
i (h

k−1
i , ti) be the updated belief of player i with a leakage

type ti when the others follow their default strategies in S0. Further, let Hk−1
i (ti) be

player i’s set of all private histories up to (and including) stage k − 1 when having

leakage type ti, and let Hk−1
i (ti, θi) ⊆ Hk−1(ti) be all the private histories of player

i that can be rationalized when player i is of value type θi and follows her default

strategy, S0
i (θi), that is,

Hk−1
i (ti, θi) ={

hk−1
i ∈ Hk−1(ti) : ∃θ−i ∈ Θ−i such that hk−1

i ⊂ supp
(
ζ((S0

j (θj))j∈N)
)}

.

On the other hand, let H̄k−1
i (ti, θi) ⊆ Hk−1(ti) \Hk−1

i (ti, θi) be the set of histories

that cannot be thus rationalized. Because the game G is pruned, the set H̄k−1
i (ti, θi)

consists exactly of those histories in which player i has pretended to be of different

value type (and taken an action that is different from her equilibrium default action)

for at least one round before, and including, k − 1.

Now, fix player i with value type θi and leakage type ti, and take a history hk−1
i ∈

H̄k−1
i (ti, θi). Suppose, for the time being, that the other players j ̸= i all continue

following their default strategies, S0
j , in the all future rounds and that player i has

updated her belief to µd
i (h

k−1
i , ti). Because the game G is finite, player i has an

optimal continuation strategy in such a situation, which we denote by Ŝi(θi, ti).

Now, we combine the default strategies with the off-path best response Ŝi(θi, ti).

defined above and consider the following strategy-belief profile (S, µ). For all players

i ∈ N , all payoff types θi ∈ θi, all leakage types ti ∈ ti and all private histories

hk−1
i ∈ Hk−1

i (ti), let

Si(θi, ti)(h
k−1
i ) =

S0
i (θi)(h

k−1) if hk−1
i ∈ Hk−1

i (ti, θi)

Ŝi(θi, ti)(h
k−1
i ) otherwise

and

µi(h
k−1
i , ti) = µd

i (h
k−1
i , ti).
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We want to show that (S, µ) is an equilibrium in the environment (G, T ); i.e. that

there is no player i, value type θi, and leakage type ti with a deviation σi from Si(θi, ti)

such that

Eµi

[
Ui (σi, (Sj(θj, tj))j ̸=i, θi, θ−i)

∣∣hk−1
i , ti

]
>

Eµi

[
Ui (Si(θi, ti), (Sj(θj, tj))j ̸=i, θi, θ−i)

∣∣hk−1
i , ti

]
(3)

for some stage k and history hk−1
i . Observe that we have mutual sequential optimality

off the path of play by construction. Consequently, we only need to verify on-path

histories.

So, fix a type θi and any k and hk−1
i ∈ Hk−1

i (ti, θi). First, consider any type profile

t in which player i knows that she is the uniquely fastest player, observing everyone

else’s actions. We want to argue that, for any such leakage type profile, if all other

players follow their default strategies, it is optimal for player i to do so, too.

For the argument, consider the one-profile t1 in which player i believes to be the

uniquely fastest player and the others to be equally slow. Because the leakage type of

the slow players in the one profile t1 is equal to their leakage type in the zero profile

t0 (they believe that everyone is equally fast and that this is common knowledge),

and we used t0 to construct the default strategy profile, the equilibrium strategy S∗
i

of the slow players in t1 is equal to their default strategy.

Consequently, when the others follow their default strategies, then the payoff to

player i under any type profile in which she knows to be the uniquely fastest player

when choosing a strategy σi is equal to that of the fastest player in t1 (as the fast

player observes all other actions in either case and draws the same conclusions),

Eµi

[
Ui (σ, (Sj(θj, tj))j ̸=i, θi, θ−i)

∣∣hk−1
i , t1i

]
, (4)

for any k and hk−1
i on the path of play of the strategy profile S.

In particular, when player i follows the equilibrium strategy of the fastest player

in the one-profile, S∗
i (θi, t

1
i ), then the payoff is

Eµi

[
Ui

(
S∗
i (θi, t

1
i ), (Sj(θj, tj))j ̸=i, θi, θ−i

) ∣∣hk−1
i , t1i

]
= Eµi

[
ui(f(θi, θ−i), (θi, θ−i))

∣∣hk−1
i , t1i

]
. (5)
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At the same time, because all opponents of i follow the default strategy on the

path of play, if player i follows the default action, then by construction f(θ) obtains

as an outcome for any given value profile θ, giving us

Eµi

[
Ui

(
S0
i (θi), (Sj(θj, tj))j ̸=i, θi, θ−i

) ∣∣hk−1
i , t1i

]
= Eµi

[
ui(f(θi, θ−i), (θi, θ−i))

∣∣hk−1
i , t1i

]
. (6)

Consequently, S0
i (θi) yields the upper bound on possible payoffs. As this holds for

all value types θi ∈ Θi, following the default strategy is a best response.

Next, consider any type profile in which player i believes to be faster than all

other players but one (if there is such a profile in T ). From the arguments above, we

know that, even if player i were to observe the action of the unobservable player, and

no matter what that player does, player i will not want deviate from S0
i (θi) for any

value type θi. So, again, that player best responds by playing the default strategy. In

fact, we can repeat the above argument for any type profile in which player i believes

to be faster than all but some m ≥ 2 other players, giving us that, no matter how fast

a player, choosing the default strategy is a best response. We have, thus, established

that (S, µ) is an equilibrium.

To finish the proof, observe that, because in the equilibrium (S, µ), everyone

behaves according to S0 on the path of play, we have shown that (S0, µ0), where

µ0
i (θi)(h) = µ∗

i (θi, t
0
i )(h) for all h ∈ H, is a leakage-proof equilibrium.

A.2 Proofs for Section 5

Proof of Lemma 1. For leakage type ti and the history hk−1
i under consideration, we

say that a type (θ̂i, ti) is feasible when Qi(θ̂, ti, ti, h
k−1
i ) > 0. The value types θi thus

identified correspond to the value types that may still be in the auction at the history

under consideration. Incentive compatibility for a (feasible) bidder (θi, ti) mimicking

a feasible bidder
(
θ̃i, ti

)
requires

θiQi

(
θi, ti, ti, h

k−1
i

)
−Mi

(
θi, ti, ti, h

k−1
i

)
≥ θiQi

(
θ̃i, ti, ti, h

k−1
i

)
−Mi

(
θ̃i, ti, ti, h

k−1
i

)
. (7)
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Similarly, the incentive compatibility for a bidder
(
θ̃i, ti

)
mimicking a bidder (θi, ti)

yields

θ̃iQi

(
θ̃i, ti, ti, h

k−1
i

)
−Mi

(
θ̃i, ti, ti, h

k−1
i

)
≥ θ̃iQi

(
θi, ti, ti, h

k−1
i

)
−Mi

(
θi, ti, ti, h

k−1
i

)
. (8)

Combining inequality (7) with inequality (8) and rearranging terms, we have

θ̃i

(
Qi

(
θi, ti, ti, h

k−1
i

)
−Qi

(
θ̃i, ti, ti, h

k−1
i

))
≤ Mi

(
θi, ti, ti, h

k−1
i

)
−Mi

(
θ̃i, ti, ti, h

k−1
i

)
≤ θi

(
Qi

(
θi, ti, ti, h

k−1
i

)
−Qi

(
θ̃i, ti, ti, h

k−1
i

))
. (9)

The outer inequality in (9) requires(
θi − θ̃i

)(
Qi

(
θi, ti, ti, h

k−1
i

)
−Qi

(
θ̃i, ti, ti, h

k−1
i

))
≥ 0,

which implies that Qi (·) is non-decreasing in θi, giving us claim (i).

To continue, we we define

Ui = Eµi

[
Ui (Si(θi, ti), (Sj(θj, tj))j ̸=i, θi, θ−i)

∣∣hk−1
i , ti

]
Ũi = Eµi

[
Ui

(
Si(θ̃i, ti), (Sj(θj, tj))j ̸=i, θi, θ−i

) ∣∣hk−1
i , ti

]
and use the facts

Ui = θiQi

(
θi, ti, ti, h

k−1
i

)
−Mi

(
θi, ti, ti, h

k−1
i

)
Ũi = θiQi

(
θ̃i, ti, ti, h

k−1
i

)
−Mi

(
θ̃i, ti, ti, h

k−1
i

)
to re-express the inequalities in (9) as

(θ̃i − θi)Qi

(
θi, ti, ti, h

k−1
i

)
≤ Ũi − Ui ≤ (θ̃i − θi)Qi

(
θ̃i, ti, ti, h

k−1
i

)
. (10)

In particular, for θis+1 = θ̃i and θis = θi, we obtain

(θis+1 − θis)Qi

(
θis, ti, ti, h

k−1
i

)
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≤ Eµi

[
Ui (Si(θis+1, ti), (Sj(θj, tj))j ̸=i, θis+1, θ−i)

∣∣hk−1
i , ti

]
−

Eµi

[
Ui (Si(θis, ti), (Sj(θj, tj))j ̸=i, θis, θ−i)

∣∣hk−1
i , ti

]
≤ (θis+1 − θis)Qi

(
θis+1, ti, ti, h

k−1
i

)
. (11)

Adding up these inequalities from s = m to s = m − 1 and using Assumption 5

then yields

m∑
s=m+1

(θis − θis−1)Qi(θis−1, ti, ti, h
k−1
i )

≤ Eµi

[
Ui (Si(θi, ti), (Sj(θj, tj))j ̸=i, θi, θ−i)

∣∣hk−1
i , ti

]
≤

m∑
s=m+1

(θis − θis−1)Qi(θis, ti, ti, h
k−1
i ).

But then, it also holds

m∑
s=m+1

(θis − θis−1)Qi(θis−1, t̂i, ti, h
k−1
i )

≤ Eµi

[
Ui

(
Si(θi, t̂i), (Sj(θj, tj))j ̸=i, θi, θ−i

) ∣∣hk−1
i , ti

]
≤

m∑
s=m+1

(θis − θis−1)Qi(θis, t̂i, ti, h
k−1
i ),

for feasible t̂i that believe to be slower than ti, because the outer expressions in

the inequalities above correspond to the bounds on the expected utility of type

(θi, t̂i), conditional on the information of the faster leakage type ti. To finish the

proof, we then recall that the allocation-invariance under leakage property implies

Qi(θi, ti, ti, h
k−1
i ) = Qi(θi, t̂i, ti, h

k−1
i ) for all feasible ti and t̂i, giving us claim (ii).

Proof of Theorem 2. As in the proof to Theorem 1, let t0 = (t01, ..., t
0
n) denote a profile

of leakage types where everyone believes it is common knowledge that everyone is

equally fast (the zero profile; cf. Definition 2) and let t1 = (t01, ..., t
0
i−1, t

1
i , t

0
i+1...., t

0
n)

denote a generic one profile, corresponding to the leakage order where one player is

faster than all the others who are equally fast (again, cf. Definition 2). We will be

explicit about which player is fastest below.

Fix any type space T . By assumption, the environment Γ = (G, T ) admits a
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PBE (S∗, µ∗) that is efficient for all θ ∈ Θ and t ∈ T . The equilibrium (S∗, µ∗)

allows us to determine equilibrium play in the default game G, which we call the

default strategies. Observe that the private histories of the any player i under the

zero-leakage type profile t0 are identical to public histories, i.e. hk−1 = hk−1
i . Hence,

for all players i ∈ N , all payoff types θi ∈ θi, and all histories h ∈ H, we may define

S0
i (θi)(h) = S∗

i (θi, t
0
i )(h).

For the following, let µd
i (h

k−1
i , ti) be the updated belief of player i with a leakage

type ti when the others follow their default strategies in S0. Further, let Hk−1
i (ti) be

player i’s set of all private histories up to (and including) stage k − 1 when having

leakage type ti, and let Hk−1
i (ti, θi) ⊆ Hk−1(ti) be all the private histories of player

i that can be rationalized when player i is of value type θi and follows her default

strategy, S0
i (θi), that is,

Hk−1
i (ti, θi) ={

hk−1
i ∈ Hk−1(ti) : ∃θ−i ∈ Θ−i such that hk−1

i ⊂ supp
(
ζ((S0

j (θj))j∈N)
)}

.

On the other hand, let H̄k−1
i (ti, θi) ⊆ Hk−1(ti) \Hk−1

i (ti, θi) be the set of histories

that cannot be thus rationalized. Because the game G is pruned, the set H̄k−1
i (ti, θi)

consists exactly of those histories in which player i has pretended to be of different

value type (and taken an action that is different from her equilibrium default action)

for at least one round before, and including, k − 1.

Now, fix player i with value type θi and leakage type ti, and take a history hk−1
i ∈

H̄k−1
i (ti, θi). Suppose, for the time being, that the other players j ̸= i all continue

following their default strategies, S0
j , in all future rounds and that player i has updated

her belief to µd
i (h

k−1
i , ti). Because the game G is finite, player i has an optimal

continuation strategy in such a situation, which we denote by Ŝi(θi, ti).

Now, we combine the default strategies with the off-path best response Ŝi(θi, ti).

defined above and consider the following strategy-belief profile (S, µ). For all players

i ∈ N , all payoff types θi ∈ θi, all leakage types ti ∈ ti and all private histories
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hk−1
i ∈ Hk−1

i (ti), let

Si(θi, ti)(h
k−1
i ) =

S0
i (θi)(h

k−1) if hk−1
i ∈ Hk−1

i (ti, θi)

Ŝi(θi, ti)(h
k−1
i ) otherwise

and

µi(h
k−1
i , ti) = µd

i (h
k−1
i , ti).

We want to show that (S, µ) is an ϵ-PBE in the environment (G, T ); i.e. that there

is an ϵ > 0 such that there is no player i, value type θi, and leakage type ti with a

deviation σi from Si(θi, ti) such that

Eµi

[
Ui (σi, (Sj(θj, tj))j ̸=i, θi, θ−i)

∣∣hk−1
i , ti

]
>

Eµi

[
Ui (Si(θi, ti), (Sj(θj, tj))j ̸=i, θi, θ−i)

∣∣hk−1
i , ti

]
+ ϵ (12)

for any stage k and history hk−1
i . Observe that we have mutual sequential optimality

off the path of play by construction. Consequently, we only need to verify on-path

histories.

So, fix a type θi and any k and hk−1
i ∈ Hk−1

i (ti, θi). First, consider any type profile

t in which player i knows that she is the uniquely fastest player, observing everyone

else’s actions. We want to argue that, for any such leakage type profile, if all other

players follow their default strategies, it is optimal for player i to do so, too.

For the argument, consider the one-profile t1 in which player i believes to be the

uniquely fastest player and the others to be equally slow. Because the leakage type of

the slow players in the one profile t1 is equal to their leakage type in the zero profile

t0 (they believe that everyone is equally fast and that this is common knowledge),

and we used t0 to construct the default strategy profile, the equilibrium strategy S∗
i

of the slow players in t1 is equal to their default strategy.

Consequently, when the others follow their default strategies, then the payoff to

player i under any type profile in which she knows to be the uniquely fastest player

when choosing a strategy σi is equal to that of the fastest player in t1 (as the fast

player observes all other actions in either case and draws the same conclusions),

Eµi

[
Ui (σ, (Sj(θj, tj))j ̸=i, θi, θ−i)

∣∣hk−1
i , t1i

]
, (13)
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for any k and hk−1
i on the path of play of the strategy profile S.

In particular, when player i follows the equilibrium strategy of the fastest player

in the one-profile, S∗
i (θi, t

1
i ), then the payoff is

Eµi

[
Ui

(
S∗
i (θi, t

1
i ), (Sj(θj, tj))j ̸=i, θi, θ−i

) ∣∣hk−1
i , t1i

]
.

On the other hand, because all opponents of i follow the default strategy on the path

of play, if player i follows the default action, then the payoff is

Eµi

[
Ui

(
S0
i (θi), (Sj(θj, tj))j ̸=i, θi, θ−i

) ∣∣hk−1
i , t1i

]
= Eµi

[
Ui (S

∗
i (θi, t0), (Sj(θj, tj))j ̸=i, θi, θ−i)

∣∣hk−1
i , t1i

]
.

We want to argue that

Eµi

[
Ui

(
S0
i (θi), (Sj(θj, tj))j ̸=i, θi, θ−i

) ∣∣hk−1
i , t1i

]
+ 2δ ≥

Eµi

[
Ui

(
S∗
i (θi, t

1
i ), (Sj(θj, tj))j ̸=i, θi, θ−i

) ∣∣hk−1
i , t1i

]
.

Indeed, the allocation-invariance-under-leakage property together with the payoff

bounds from Claim (ii) in Lemma 1 imply

m∑
s=m+1

(θis − θis−1)
[
Qi(θis−1, t

1
i , t

1
i , h

k−1
i )−Qi(θis, t

1
i , t

1
i , h

k−1
i )

]
≤ Eµi

[
Ui

(
S∗
i (θi, t

0
i ), (Sj(θj, tj))j ̸=i, θi, θ−i

) ∣∣hk−1
i , t1i

]
− Eµi

[
Ui

(
S∗
i (θi, t

1
i ), (Sj(θj, tj))j ̸=i, θi, θ−i

) ∣∣hk−1
i , t1i

]
≤

m∑
s=m+1

(θis − θis−1)
[
Qi(θis, t

1
i , t

1
i , h

k−1
i )−Qi(θis−1, t

1
i , t

1
i , h

k−1
i )

]
,

where the definitions of m and m are as in Lemma 1.

Now, recall that |θi−θ′i| ≤ δ for all θi, θ
′
i ∈ Θi. Then, because Qi is non-decreasing

in θi on the set of value types {θi ∈ Θi : Qi(θi, ti, ti, h
k−1
i ) > 0} (cf. the first claim in

Lemma 1) and its value lies between zero and one, above inequalities imply

− δ ≤ Eµi

[
Ui

(
S∗
i (θi, t

0
i ), (Sj(θj, tj))j ̸=i, θi, θ−i

) ∣∣hk−1
i , t1i

]
− Eµi

[
Ui

(
S∗
i (θi, t

1
i ), (Sj(θj, tj))j ̸=i, θi, θ−i

) ∣∣hk−1
i , t1i

]
≤ δ, (14)
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as desired.

Next, consider any type profile in which player i believes to be faster than all

other players but one (if there is such a profile in T ). From the arguments above,

we know that, even if player i were to observe the action of the unobservable player,

and no matter what that player does, player i cannot gain more than 2δ by deviating

from S0
i (θi) for any value type θi. So, again, that player approximately best responds

by playing the default strategy. In fact, we can repeat the above argument for any

type profile in which player i believes to be faster than all but some m ≥ 2 other

players, giving us that, no matter how fast a player, choosing the default strategy is

an approximate best response. We have, thus, established that (S, µ) is an ϵ−PBE

with ϵ = 2δ.

To finish the proof, observe that, because in the equilibrium (S, µ), everyone

behaves according to S0 on the path of play, we have shown that (S0, µ0), where

µ0
i (θi)(h) = µ∗

i (θi, t
0
i )(h) for all h ∈ H, is a leakage-proof ϵ-PBE with ϵ = 2δ that is

efficient.

Proof of Lemma 2. From the proof of Lemma 1, we know the maximum expected

payment from a bidder i having value θis is equal to

Mi (θis, ti) = θisQi(θis, ti)− Eµi
[Ui (Si(θis, ti), (Sj(θj, tj))j ̸=i, θi, θ−i)]

= θisQi(θis, ti)−
s−1∑
m=1

(θim+1 − θim)Qi(θis, ti),

where Qi(θis, ti) = Qi (θis, ti, ti, h∅) is the expected allocation of type (θis, ti) at the

onset of the auction. Letting mi = |Θi|, the expected revenue is

Eγ

[
Eρ

[∑
i∈N

Mi (θi, ti)

]]

= Eγ

[∑
i∈N

[
mi∑
m=1

ρi (θim)Mi (θim, ti)

]]

= Eγ

[∑
i∈N

[
mi∑
m=1

ρi (θim)

[
θimQi (θim, ti)−

m−1∑
m̂=1

(θim̂+1 − θim̂)Qi (θim̂, ti)

]]]
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= Eγ

[∑
i∈N

[
mi∑
m=1

ρi (θim) θimQi (θim, ti)−
mi∑
m=1

ρi (θim)
m−1∑
m̂=1

(θim̂+1 − θim̂)Qi (θim̂, ti)

]]

= Eγ

[∑
i∈N

[
mi∑
m=1

ρi (θim) θimQi (θim, ti)−
mi∑
m=1

(θim+1 − θim)Qi (θim, ti)

mi∑
m̂=m+1

ρi (θim̂)

]]

= Eγ

[∑
i∈N

[
mi∑
m=1

ρi (θim)Qi (θim, ti)

[
θim − (θim+1 − θim)

∑mi

m̂=m+1 ρi (θim̂)

ρi (θim)

]]]

= Eγ

[∑
i∈N

[
mi∑
m=1

ρi (θim)Qi (θim, ti)

[
θim − (θim+1 − θim)

1−
∑m

m̂=1 ρi (θim̂)

ρi (θim)

]]]

= Eγ

[∑
i∈N

[
mi∑
m=1

ρi (θim)
∑
θ−i

ρ−i(θ−i)Eγ−i
[qi ((θim, θ−i), (ti, t−i))]×

[
θim − (θim+1 − θim)

1−
∑m

m̂=1 ρi (θim̂)

ρi (θim)

] ]]

= Eγ

[∑
θ∈Θ

ρ(θ)
∑
i∈N

Eγ−i
[qi (θ, (ti, t−i))]

[
θim − (θim+1 − θim)

1−
∑m

m̂=1 ρi (θim̂)

ρi (θim)

]]

= Eγ

[∑
θ∈Θ

ρ(θ)
∑
i∈N

qi (θ, t))

[
θim − (θim+1 − θim)

1−
∑m

m̂=1 ρi (θim̂)

ρi (θim)

]]
.

The third-to-last equality follows because value and leakage types are independent

(recall γ−i is i’s prior about T−i). The second-to-last equality follows because value

types are independent. And the last equality follows from the law of iterated expec-

tations. In the final expression, the term in the square brackets corresponds to the

virtual valuation vim, which is independent of t, thus giving us the claim.

A.3 Proofs for Section 6

For the proofs in this section, we make use of following useful observation.

Observation 1. Any EPIC mechanism (Γ, S, µ) is sequentially ex-post incentive com-

patible on the equilibrium path: For each payoff type profile θ ∈ Θ, each stage history

h ⊂ z where z is in the support of ζ ((Sj(θj))j∈N)) and each player i ∈ P (h), we have

Uh
i (Si (θi) , S−i (θ−i) , θ) ≥ Uh

i (σi, S−i (θ−i) , θ)

for any σi, where Uh
i (.) denotes player i’s continuation utility under the respective
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strategy and type profiles.

Proof of Observation 1. Suppose not. Then, there is a player i, a type θi, a stage

history h ⊂ z where z is in the support of ζ ((Sj(θj))j∈N)) and a deviation σi, such

that

Uh
i (Si (θi) , S−i (θ−i) , θ) < Uk

i (σi, S−i (θ−i) , θ) .

We construct a strategy S ′
i (θi) that is a profitable deviation from Si (θi). Let i

play Si (θi) unless they encounter h, in which case they play σi from that point on.

Formally,

S ′
i (θi) =

σi at h′ if h ⊆ h′,

Si (θi) otherwise.

Because h is on the equilibrium path, the path-of-play passes through h with positive

probability. Then, we have

Ui (Si (θi) , S−i (θ−i) , θ) < Ui (σi, S−i (θ−i) , θ) .

But this says that S is not EPIC, giving us the desired contradiction.

Proof of Proposition 2. Fix a pure strategy EPIC mechanism (Γ, S, µ). We want to

show that S is a leakage-proof equilibrium in G. Because S is EPIC, Observation 1

gives that, for each payoff type profile θ ∈ Θ, each stage history h ⊂ z where z is in

the support of ζ ((Sj(θj))j∈N)) and each player i ∈ P (h), we have

Uh
i (Si (θi) , S−i (θ−i) , θ) ≥ Uh

i (σi, S−i (θ−i) , θ)

for any σi. But then, because we are dealing with pure strategies, Si (θi) being a best

response irrespective of the payoff types of other players implies that player i does

not want to deviate even if i observes the actions of other players, as long as they are

playing according to the pure strategy profile S−i. In other words, leakage will not

lead to profitable deviations, thereby providing leakage-proofness as desired.

Proof of Proposition 3. By contraposition. Let (Γ, S, µ) be a static mechanism that

is not EPIC. By Observation 1, there is a player i ∈ N , a type profile θ ∈ Θ, and a
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deviation σi such that

U
h∅
i (Si (θi) , S−i (θ−i) , θ) < U∅

i (σi, S−i (θ−i) , θ)

In particular, there exists at least one action a−i in the support of (Sj (θj) (h∅))j ̸=i for

which player i optimally chooses an action that is not in the support of Si (θi) (h∅).

Now, by Assumption 2, there is a type profile in which player i is the uniquely fastest

player and all other players believe that everyone is equally slow. Under such a

profile, all players except i play according to (Sj (θj) (h∅))j ̸=i. So, for the private

history hi = {a−i}, player i would like to choose an action that is different from what

Si prescribes, violating leakage-proofness and, thus, giving us the claim.

B The Role of Pruning and a Minimally Rich Leak-

age Type Space

In this section, we provide an example showing that if we drop Assumptions 2 (Min-

imally Rich Type Space) and 3 (Pruning), then Theorem 1 fails: Even if the same

social choice function f is implemented under any leakage order, there may not exist

a leakage-proof equilibrium in the game G which implements f .

Example 3. There are two players. Player 1 has two possible types: Θ1 = {θH , θL}
with equal probability, and player 2 has one type: Θ2 = {θ2}. There are 5 possible

outcomes: X = {x, y, z,m, n}.
The following table depicts, for each outcome in X and type profile θ ∈ Θ1 ×Θ2,

the payoffs (u1, u2) of the two players (u1 corresponds to player 1’s payoff and u2

corresponds to player 2’s payoff):

x θ2

θH (2,1)

θL (0,1)

y θ2

θH (0,1)

θL (2,1)

z θ2

θH (-2,-2)

θL (-2,-2)

m θ2

θH (-2,2)

θL (-2,2)

n θ2

θH (2,-2)

θL (2,-2)

The social choice function f is given by:

f θ2

θH x

θL y
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The game G is a static game as follows (each box specifies the outcome resulting

from each pair of actions):

G a∗ a∗2H a∗2L a′2H a′2L

a1H x z z m z

a1L y z z z m

a∗1H z x z n z

a∗1L z z y z n

For the sake of the argument, we consider a setup in which leakage orders are

common knowledge. Let us list all the possible leakage orders and the corresponding

equilibria:21

≾0 =̂ 1 ∼ 2: This corresponds to the leakage order under which the two players move

simultaneously without observing each other’s action. Clearly,

S1 (θH ,≾0) = a1H , S1 (θL,≾0) = a1L, S2 (θ2,≾0) = a∗

is a Bayesian Nash equilibrium strategy profile, which implements f .

≾1 =̂ 1 ≻ 2: Here, player 1 can observe player 2’s action. The following strategy

profile is a perfect Bayesian equilibrium which implements f :

S1 (θ1,≾1) (a2) =



a1H if a2 = a∗, θ1 = θH

a1L if a2 = a∗, θ1 = θL

a∗1H if a2 ∈ {a∗2H , a′2H}

a∗1L if a2 ∈ {a∗2L, a′2L} ,

S2 (θ2,≾1) = a∗.

≾2 =̂ 1 ≺ 2: Here, player 2 can observe player 1’s action. The following strategy

profile is a perfect Bayesian equilibrium which implements f :

S1 (θ1,≾2) =

a∗1H if θ1 = θH

a∗1L if θ1 = θL,
S2 (θ2,≾2) (a1) =



a′2H if a1 = a1H

a′2L if a1 = a1L

a∗2H if a1 = a∗1H

a∗2L if a1 = a∗1L

.

21For simplicity, we omit the belief system, which can be easily derived from the strategy profile.
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Consequently, the game G implements the same social function f under any leak-

age order. Nonetheless, it lacks a leakage-proof equilibrium. The intuition is that

player 1 has costly precautionary actions, a∗1H and a∗1L. These actions are worthwhile

if information actually leaks to player 2, but may have negative consequences if no

leakage occurs. As a result, the equilibrium fails to be leakage-proof.

If we prune the game, this issue disappears. Specifically, pruning to the equilib-

rium under no leakage, ≾0, restricts player 1 to {a1H , a1L} and player 2 to a∗. In this

reduced game, the equilibrium outcome is f(θ) regardless of the leakage order (≾0,

≾1, or ≾2). Pruning thus simplifies the strategic environment under leakages.

In contrast, assuming a minimally rich type space prevents f(θ) from being imple-

mented under leakages. For example, consider a type profile where player 1 believes

they are as slow as player 2, while player 2 knows both that they are faster and what

player 1 believes. In this case, the outcome will be m under any possible value type

profile θ. The minimally rich type space assumption, therefore, restricts the strategic

settings to which our analysis applies.
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